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Abstract. Consider a planar, bounded, m-connected region Ω, and let ∂Ω be its boundary.
Let T be a cellular decomposition of Ω ∪ ∂Ω, where each 2-cell is either a triangle or a
quadrilateral. From these data and a conductance function we construct a canonical pair
(S, f) where S is a genus (m− 1) singular flat surface tiled by rectangles and f is an energy
preserving mapping from T (1) onto S. By a singular flat surface, we will mean a surface
which carries a metric structure locally modeled on the Euclidean plane, except at a finite
number of points. These points have cone singularities, and the cone angle is allowed to
take any positive value (see for instance [28] for an excellent survey). Our realization may
be considered as a discrete uniformization of planar bounded regions.

0. Introduction

Consider a planar, bounded, m-connected region Ω, and let ∂Ω be its boundary. Let T be
a cellular decomposition of Ω∪∂Ω, where each cell is either a triangle or a quadrilateral. Let
∂Ω = E1 t E2, where E1 is the outermost component of ∂Ω. Invoke a conductance function
on T (1), making it a finite network, and use it to define a combintorial Laplacian ∆ on T (0).
Let k be a positive constant. Let g be the solution of a Dirichlet boundary value problem
(D-BVP) defined on T (0) and determined by requiring that g|E1 = k, g|E2 = 0 and ∆g = 0
at every interior vertex of T (0), i.e. g is combinatorially harmonic. Furthermore, let E(g)
be the Dirichlet energy of g. Following the notation in [13], let ∂g

∂n
(x) denote the normal

derivative of g at the vertex x ∈ ∂Ω. Our first result is:

Theorem 0.1. (Discrete uniformization of a pair of pants) Let P be a bounded, triply con-
nected planar region and let (Ω, ∂Ω, T ) = (P , ∂P = E1 t E2, T ) where E2 = E1

2 t E2
2 . Let

SP be a singular flat pair of pants with exactly one singular point Q having 4π as its cone
angle such that

(1) LengthEuclidean(SP)E1 =
∑

x∈E1

∂g
∂n

(x),

(2) LengthEuclidean(SP)E1
2

= −
∑

x∈E1
2

∂g
∂n

(x),

(3) LengthEuclidean(SP)E2
2

= −
∑

x∈E2
2

∂g
∂n

(x), and

(4) the Euclidean length of a shortest geodesic connecting E1 to either E1
2 or E2

2 is k,

where (SP)E1 , (SP)E1
2

and (SP)E2
2

are the boundary components of SP . Then there exists a

mapping f which associates to each edge in T (1) a unique Euclidean rectangle in SP , in such
a way that the collection of these rectangles forms a tiling of SP . Furthermore, f is energy
preserving in the sense that E(g) = Area(SP), and f is boundary preserving.
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Throughout this paper a Euclidean rectangle will denote the image under an isometry of a
planar Euclidean rectangle. For instance, most of the image rectangles that we will construct
embed in a flat Euclidean cylinder. These will further be glued in a way that will not distort
the Euclidean structure (see §3 and §4 for the details). In our setting, boundary preserving
means that the rectangle associated to an edge [u, v] with u ∈ ∂Ω has one of its edges on a
corresponding boundary component of the singular surface.

A singular flat, genus zero compact surface with m ≥ 3 boundary components with conical
singularities, will be called a ladder of singular pairs of pants. We now state the main result
of this paper:

Theorem 0.2. (The general case) Let (Ω, ∂Ω, T ) be a bounded, m-connected, planar region
with E2 = E1

2 t E2
2 . . . t Em−1

2 . Let SΩ be a ladder of singular pairs of pants such that

(1) LengthEuclidean(SΩ)E1 =
∑

x∈E1

∂g
∂n

(x), and

(2) LengthEuclidean(SΩ)Ei
2

= −
∑

x∈Ei
2

∂g
∂n

(x), for i = 1, · · · ,m− 1,

where (SΩ)E1 and (SΩ)Ei
2
, for i = 1, · · · ,m− 1, are the boundary components of SΩ. Then,

there exists a mapping f which associates to each edge in T (1) a unique Euclidean rectangle
in SΩ in such a way that the collection of these rectangles forms a tiling of SΩ. Furthermore,
f is boundary preserving, and f is energy preserving in the sense that E(g) = Area(SΩ).

The following Corollary is straightforward, thus establishing the statement in the abstract
of this paper:

Corollary 0.3. Under the assumptions of Theorem 0.2, there exists a canonical pair (S, f),
where S is a flat surface with conical singularities of genus (m − 1) tiled by Euclidean
rectangles and f is an energy preserving mapping from T (1) into S, in the sense that
2E(g) = Area(S). Moreover, S admits a pair of pants decomposition whose dividing curves
have Euclidean lengths given by (1)− (3) of Theorem 0.1.

Proof. Given (Ω, ∂Ω, T ), glue together two copies of SΩ (their existence is guaranteed by
Theorem 0.2) along corresponding boundary components. This results in a flat surface
S = SΩ

⋃
∂Ω

SΩ of genus (m− 1) and a mapping f̄ which restricts to f on each copy.

�

In the course of the proofs of Theorem 0.1 and Theorem 0.2, it will become apparent
that the number of singular points and their cone angles, as well as the lengths of shortest
geodesics between boundary curves in the ladder, may be explicitly determined. In partic-
ular, the cone angles obtained by our construction are always even integer multiples of π
(see Equation (4.12) for the actual computation). Some of these surfaces, those with trivial
monodromy, are called translation surfaces and for excellent accounts see for instance [21],
[25] and [30]. Also, the dimensions of each rectangle are determined by the given D-BVP
problem on T (0). For [u, v] ∈ T (1) the associated rectangle will have its height equal to
(g(u) − g(v)) and its width equal to c(u, v)(g(u) − g(v)), when g(u) > g(v). Some of the
rectangles constructed are not embedded. We will comment on this point (which is also
transparent in the proofs) in Remark (4.15). In a snapshot, some of the rectangles which
arise from intersection of edges with singular level curves are not embedded.

The following theorem is foundational and serves as a building block in the proofs of all
of the above theorems. We prove:
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Theorem 0.4. (Discrete uniformization of an annulus [10]) Let A be an annulus and let
(Ω, ∂Ω, T ) = (A, ∂A = E1 t E2, T ). Let SA be a straight Euclidean cylinder with height
H = k and circumference

C =
∑
x∈E1

∂g

∂n
(x).

Then there exists a mapping f which associates to each edge in T (1) a unique embedded
Euclidean rectangle in SA in such a way that the collection of these rectangles forms a tiling
of SA. Furthermore, f is boundary preserving, and f is energy preserving in the sense that
E(g) = Area(SA).

Given (Ω, ∂Ω, T ), we will work with the natural affine structure induced by the cellu-
lar decomposition. Let us denote this cell complex endowed with this affine structure by
C(Ω, ∂Ω, T ). There is a common thread in our proofs of the above theorems. Extend g
to an affine map ḡ defined on T . This results in a piecewise linear structure on T . Next,
study the level curves of ḡ on a 2-dimensional complex which is homotopically equivalent
to C(Ω, ∂Ω, T ), embedded in R3, obtained by using ḡ as a height function on C(Ω, ∂Ω, T ).
We will work with the level curves of ḡ or equivalently, with their projection on C(Ω, ∂Ω, T ).
The topological structure of the level curves associated with the solutions will be carefully
studied. For example, the level curves in the case of an annulus (Theorem 0.4) are simple,
piecewise linear closed curves, all of which are in the (free) homotopy class determined by
E1. One nice consequence of this is that all the rectangles constructed in the proof of The-
orem 0.4 are embedded. In the proof of Theorem 0.1, we will show that all the level curves
associated to values in [0, k1], for some constant k1 < k, are simple, piecewise linear closed
curves in either the (free) homotopy class of E1

2 or the class determined by E2
2 . However,

for the value k1, it will be proved that the (unique) associated level curve is a figure eight.
Furthermore, any level curve of ḡ for a value which is larger than k1 and smaller than or
equal to k, is a simple closed curve in the (free) homotopy class determined E1. The basic
idea of Theorem 0.1 is to cut (Ω, ∂Ω, T ) along the (projection of) a figure eight curve, tile
each cylinder according to Theorem 0.4, and glue back.

We will often work with a series of modified boundary value problems. Each is a slight
modification of the initial problem. This important feature of the proofs is due to the fact
that the level sets of the original boundary value problem (defined on T (0)) intersect T (1) in
a set which is much larger than T (0) (see §2 for details).

In fact, once Theorem 0.4 is proved, we proceed to prove Theorem 0.2 by an inductive
process. Unlike common proofs in the theory of surfaces, in which a surface is cut along closed
geodesics yielding a pair of pants decomposition, we keep cutting our region along particular
(projection of) singular level curves until we encounter a planar pair of pants or an annulus.
This is a subtle point, arising from the fact that our gluing needs to preserve lengths of
curves determined by two boundary value problems (see Definition 1.10). A technical point
(which will be addressed in §4) is that one boundary component of one of the pieces (or
more) in the decomposition will be singular, hence Theorem 0.4 cannot be applied directly.

The paper is organized as follows. In §1 we introduce notation, recall a few useful facts
concerning boundary value problems on graphs, and define a new natural metric induced
by a solution of a boundary value problem (see Definition 1.9). In §2 we carry out analysis
of level curves of the D-BVP solution; our study brings analysis and topology together in
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order to provide a good notion of length for level curves as well as a topological description
of them. In §3, we prove Theorem 0.4, and §4 is devoted to the proofs of Theorem 0.1 and
Theorem 0.2. Figures 2.10–2.12, Figure 3.1, and Figure 4.16 were generated by two lengthy
programs written in Mathematica (version 7.0) by the author and will be available upon
request.

Remark 0.5. The assertions of Theorem 0.4 may (in principle) be obtained by employing
techniques introduced in the famous paper by Brooks, Smith, Stone and Tutte ([10]), in which
they study square tilings of rectangles. They define a correspondence between square tilings
of rectangles and planar multigraphs endowed with two poles, a source, and a sink. They view
the multigraph as a network of resistors in which current is flowing. In their correspondence,
a vertex corresponds to a connected component of the union of the horizontal edges of the
squares in the tiling; one edge appears between two such vertices for each square whose
horizontal edges lie in the corresponding connected components. Their approach is based on
Kirckhhoff’s circuit laws that are widely used in the field of electrical engineering. We found
the sketch of the proof of Theorem 0.4 given in [10] hard to follow. In fact, another proof of a
slight generalization of this theorem was given by Benjamini and Schramm ([7], see also [8] for
a related study) using techniques from probability and the dual graph of T . It is interesting
to recall that it was Dehn [14, 1903] who was the first to show a relation between square
tiling and electrical networks. In an elegant paper, combining a mixture of geometry and
probability, Kenyon ([23]) used the fact that a resistor network corresponds to a reversible
Markov chain. He showed a correspondence between planar non-reversible Markov chains
and trapezoid tilings. A completely different method, for the case of tiling a rectangle by
squares, was given using extremal length arguments in [26] by Schramm. One should also
mention that Cannon, Floyd and Parry (see [12]), using extremal length arguments (similar
to these in [26]), provide another proof for the existence of tiling by squares. Both [26]
and [12] are widely known as “a finite Riemann mapping theorem” and serve as the first
step in Cannon’s combinatorial Riemann mapping theorem ([11]). We include our proof of
Theorem 0.4, which is guided by similar principles to some of the ones mentioned above,
yet significantly different in a few points, in order to make this paper self-contained. In
addition, the important work of Bendito, Carmona and Encinas (see for example [4],[5],[6])
on boundary value problems on graphs allows us to use a unified framework to even more
general problems. Their work is essential to our applications and we will use parts of it quite
frequently in this paper as well as in its sequels ([19],[20]).
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Institute for Mathematical Sciences, April 2008). We deeply thank the organizers for the invitations
and well-organized conferences. We thank the referee for improvements in the writing of this paper.
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1. Preliminaries - boundary value problems on graphs

We recall some known facts regarding harmonic functions and boundary value problems
on networks. We use the notation of Section 2 in [3]. Let Γ = (V,E, c) be a finite network,
that is a simple and finite connected graph with vertex set V and edge set E. Since in
this paper Γ = (V,E, c) is induced by (Ω, ∂Ω, T ), we shall further assume that the graph
is planar. Each edge (x, y) ∈ E is assigned a conductance c(x, y) = c(y, x) > 0. Let
P(V ) denote the set of non-negative functions on V . If u ∈ P(V ), its support is given by
S(u) = {x ∈ V : u(x) 6= 0}. Given F ⊂ V we denote by F c its complement in V . Set
P(F ) = {u ∈ P(V ) : S(u) ⊂ F}. The set ∂F = {(x, y) ∈ E : x ∈ F, y ∈ F c} is called the
edge boundary of F and the set δF = {x ∈ F c : (x, y) ∈ E for some y ∈ F} is called the
vertex boundary of F . Let F̄ = F

⋃
δF and let Ē = {(x, y) ∈ E : x ∈ F}. Given F ⊂ V , let

Γ̄(F ) = (F̄ , Ē, c̄) be the network such that c̄ is the restriction of c to Ē. We say that x ∼ y
if (x, y) ∈ Ē. For x ∈ F̄ let k(x) denote the degree of x (if x ∈ δ(F ) the neighbors of x are
taken only from F ).

The following are discrete analogues of classical notions in continuous potential theory
[16].

Definition 1.1. ([4, Section 3]) Let u ∈ P(F̄ ). Then for x ∈ F̄ , the function ∆u(x) =∑
y∼x c(x, y) (u(x)− u(y)) is called the Laplacian of u at x, (if x ∈ δ(F ) the neighbors of x

are taken only from F ) and the number

(1.2) E(u) =
∑
x∈F̄

∆u(x)u(x) =
∑

(x,y)∈Ē

c(x, y)(u(x)− u(y))2,

is called the Dirichlet energy of u. A function u ∈ P(F̄ ) is called harmonic in F ⊂ V if
∆u(x) = 0, for all x ∈ F .

For example when c(x, y) ≡ 1, u is harmonic at a vertex x if and only if the value of u at
x is the arithmetic average of the value of u on the neighbors of x. A fundamental property
which we will often use is the maximum property, asserting that if u is harmonic on V ′ ⊂ V ,
where V is a connected subset of vertices having a connected interior, then u attains its
maximum and minimum on the boundary of V ′ (see [27, Theorem I.35]).

For x ∈ δ(F ), let {y1, y2, . . . , ym} ∈ F be its neighbors enumerated clockwise. The normal
derivative (see [13]) of u at a point x ∈ δ(F ) with respect to a set F is

(1.3)
∂u

∂n
(F )(x) =

∑
y∼x, y∈F

c(x, y)(u(x)− u(y)).

The following proposition establishes a discrete version of the first classical Green identity.
It plays a crucial role in the proof the main theorem in [18] and is essential in this paper.

Theorem 1.4. ([3, Prop. 3.1]) (The first Green identity) Let F ⊂ V and u, v ∈ P(F̄ ).
Then we have that

(1.5)
∑

(x,y)∈Ē

c(x, y)(u(x)− u(y))(v(x)− v(y)) =
∑
x∈F

∆u(x)v(x) +
∑
x∈δ(F )

∂u

∂n
(F )(x)v(x).
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Remark 1.6. In [3], a second Green identity is obtained. In this paper we will use only the
one above. In [6] (see in particular Section 2 and Section 3), a systematic study of discrete
calculus on n-dimensional (uniform) grids of Euclidean n-space is provided. Their definition
of a tangent space may be adopted to our setting and does not require the notion of directed
edges.

Let T denote a fixed cellular decomposition of Ω ∪ ∂Ω, and let F ⊂ T (0) be given. Let
{c(x, y)}(x,y)∈Ē be a fixed conductance function, and let Γ̄(F ) be the associated network.

We are interested in functions that solve a boundary value problem (D-BVP) on Γ̄(F ). The
following definition is based on [3, Section 3] and [5, Section 4].

Definition 1.7. Let k > 0 be a constant. A solution of a Dirichlet boundary value problem
defined on Γ̄(Ω) is a function f ∈ P(Ω) such that f is harmonic in F , f |E1 = k and f |E2 = 0,
for some positive constant k.

Remark 1.8. The uniqueness and existence of a Dirichlet boundary value solution is guaran-
teed by the foundational work in [3, Section 3] and [5, Section 4]. In fact, their work provides
a detailed framework for a broader class of boundary value problems on finite networks.

A metric on a finite network is a function ρ : V → [0,∞). In particular, the length of
a path is given by integrating ρ along the path (see [11] and [15] for a different definition).
When ρ ≡ 1, the familiar distance function on V × V is obtained by setting dist(A,B) =
(
∑

x∈α 1) − 1 = k, where α = (x, x1, . . . xk) is a path with the smallest possible number of
vertices among all the paths connecting a vertex in A and a vertex in B. We now define a
“metric” which will be used throughout this paper.

Definition 1.9. Let F ⊂ V and let f ∈ P(F̄ ). The flux-gradient metric is defined by

(1.10) ρ(x) =
∂f

∂n
(F )(x), if x ∈ δ(F ).

This allows us to define a notion of length to any subset of the vertex boundary of F by
declaring:

(1.11) Length(δF ) =
∣∣ ∑
x∈δF

∂f

∂n
(F )(x)

∣∣.
In the applications of this paper, we will use the second part of the definition in order

to define length of connected components of level curves of the D-BVP solution. In [18,
Definition 3.3], we defined a similar metric (l2-gradient metric) proving several length-energy
inequalities.
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2. topology and geometry of piecewise linear level curve

Let G be a polyhedral surface and consider a function f : G(0) → R ∪ {0} such that two
adjacent vertices are given different values. Let v ∈ G(0), and let w1, w2, . . . , wk be its k
neighbors enumerated counterclockwise. Following [24, Section 3], consider the number of
sign changes in the sequence {f(w1)− f(v), f(w2)− f(v), . . . , f(wk)− f(v), f(w1)− f(v)},
which we will denote by Sgcf (v). The index of v is defined as

(2.1) Indf (v) = 1−
Sgcf (v)

2
.

Definition 2.2. A vertex whose index is different from zero will be called singular; otherwise
the vertex is regular. A level set which contains at least one singular vertex will be called
singular; otherwise the level set is regular.

A connection between the combinatorics and the topology is provided by the following
theorem, which may be considered as a discrete Hopf-Poincaré Theorem.

Theorem 2.3. ([2, Theorem 1], [24, Theorem 2]) (An index formula) We have

(2.4)
∑
v∈G

Indf (v) = χ(G).

Remark 2.5. Due to the topological invariance of χ(G), note that once the equation above is
proved for a triangulated polyhedron, it holds (keeping the same definitions for Sgcf (·) and
Indf (·)) for any cellular decomposition of χ(G). Also, while the theorem above is stated and
proved for a closed polyhedral surface, it is easy to show that it holds in the case of a surface
with boundary, where there are no singular vertices on the boundary (simply by doubling
along the boundary).

Henceforth, we will keep the notation of Section 0 and Section 1. A key ingredient in our
proofs of the theorems stated in the introduction is the ability to define a length for a level
curve of g. The main difficulty in defining such a quantity (for level curves) is the fact that
these are not piecewise linear curves of the initial cellular decomposition; hence we cannot
directly define the weight ρ along them (see Equation (1.10)).

Suppose that L is a fixed, simple, closed level curve and let O1,O2 be the two distinct
connected components of L in Ω with L being the boundary of both (this follows by using
the Jordan curve theorem; see for instance [9, Theorem III.5.G] for an interesting proof).
We will call one of them, say O1, an interior domain if all the vertices which belong to it
have g-values that are smaller than the g-value of L. The other domain will be called the
exterior domain. Note that, by the maximum principle, one of O1,O2 must have all of its
vertices with g-values smaller than L.

Let e ∈ T (1) and x = e ∩ L. For x 6∈ T (0), we have now created two new edges (x, v) and
(u, x). We may assume that v ∈ O1 and u ∈ O2. We now define conductance constants
c̃(v, x) and c̃(x, u) by

(2.6) c̃(v, x) =
c(v, u)(g(v)− g(u))

g(v)− g(x)
and c̃(u, x) =

c(v, u)(g(u)− g(v))

g(u)− g(x)
.
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We repeat the process above for any new vertex formed by the intersection of L with T (1).
By adding all the new vertices and edges, as well as the piecewise arcs of L determined by
the new vertices, we obtain two cellular decompositions, TO1 of O1 and TO2 of O2. Also, two
conductance functions are now defined on the one-skeleton of these cellular decompositions
by modifying the conductance function for g according to Equation (2.6) (i.e. changes are
occurring only on new edges). We will denote these by CO1 and CO2 respectively (on the arcs
of L the conductance is identically zero).

Definition 2.7. For i = 1, 2, we let gi denote the solution of the D-BVP determined on the
induced cellular decomposition on Oi defined by the following:

(1) for any boundary component E of Oi and for every vertex x ∈ E, gi(x) = g(x),
(2) the conductance function on Oi is COi

, and
(3) gi is harmonic in Oi.

It follows from Equation (2.6), Definition 1.1, and the existence and uniqueness theorems
in [3] that for i = 1, 2, gi exists and that gi = g|Oi

. We may now define a flux-gradient metric
for L by using Equations (1.10) and (1.11). However, unlike the situation with the boundary
components of Ω, we have two possible choices, i.e. computing the normal derivative along
L with respect to O1 or with respect to O2. Since in the applications we will cut Ω along a
particular L and wish to glue the resulting pieces together along L, these lengths computed
with respect to the flux-gradient metric in each domain should be the same. The situation
when L is not simple is more complicated and will be addressed after a detailed analysis
of the topological structure of level curves has been carried out (see the discussion after
Remark 2.19). This analysis is the main core of this section. The next lemma shows that
all level curves are in fact closed.

Lemma 2.8. A level curve for the function g is piecewise linear and closed, and each simple
cycle of L contains at least one boundary component of ∂Ω.

Proof. The assertions of the lemma are certainly true for the components of ∂Ω. Assume
now that L is not one of the these level curves and furthermore that it is not closed. Let q
be a boundary point of L. Since g is extended linearly on edges and in an affine fashion on
triangles and quadrilaterals, q may (a priori) be an interior point of an edge of the cellular
decomposition, a vertex, or in the interior of a cell. All of these cases are easily ruled out.
It remains to prove that any such level curve contains at least one boundary component of
∂Ω. If this is not the case, L (being a finite, closed, polygonal planar line) bounds a union
of 2-cells in Ω. This is a violation of the maximum principle for the harmonic function g1

constructed as in Definition 2.7 (O1 being one connected component of the union of the
2-cells bounded by L). �

Remark 2.9. Since g is extended in an affine fashion along edges, it is clear that two disjoint
level curves corresponding to the same g value are at combinatorial distance which is at least
one.

The structure of simple curves in the plane can be quite complicated and in fact is not
completely understood. In our applications, we need only analyze the topological structure of
closed curves arising as level curves of the affine extension (over triangles and quadrilaterals)
of a harmonic function as defined above. We will henceforth work in the piecewise category.
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Figure 2.10. 4-connected
triangulated domain

Figure 2.11. Level curves
for the D-BVP

Figure 2.12. The surface obtained
by using g as a height function.

Definition 2.13. A generalized piecewise bouquet of circles will denote a union of piecewise
bouquets of circles where the intersection of any two bouquets is at most a vertex. Moreover,
all such tangencies are exterior, i.e., no circle is contained in the interior of the bounded
component of another.

Proposition 2.14. Two simple cycles which correspond to the same g value either are
disjoint or intersect at a single vertex. Furthermore, under these assumptions, a simple
cycle is never contained in the annulus bounded by a different one (i.e. a “tangency” is
always external).

Proof. Let L1 and L2 be two given simple cycles corresponding to the g-value l. Let A1

and A2 be the two (piecewise) annuli which they bound respectively. Assume first that
A1 ∩ A2 = ∅ and that E = L1 ∩ L2 is a piecewise arc. Let I and J be the endpoints of E.
As mentioned before (see Lemma 2.8), both I and J are vertices. The link of the vertex I
must contain a two cell (a triangle or a quadrilateral) such that an edge between two of its
vertices crosses E. This implies that one of these vertices has g-value which is larger than
l and the other has g-value which is smaller than l. This is absurd, since by the maximum
principle all the vertices in A1 ∪ A2 which do not belong to g−1(l) have g-values that are
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strictly smaller than l (none of the vertices of these cells belong to g−1(l)). It may also
happen that L1 ∩ L2 = {P1, P2, . . . , Pk}, where k ≥ 1 is an integer, and where the points Pi
are oriented clockwise. Let t2 be the arc connecting P1 to P2 which belongs to L2 and which
does not pass through any other of the PI ’s. Let t1 be the arc in L1 which connects P1 to P2

which does not pass through any of the Pi’s. Then t1∪ t2 is a simple closed level curve which
bounds an annulus (see Lemma 2.8). The link of the vertex P1 must contain a triangle or
a quadrilateral with one of its edges crossing t1. As above, this leads to a violation of the
maximum principle.

Assume now that A1∩A2 6= ∅ and (without loss of generality) that A1∪L1 contains an arc
t of L2. Let its endpoints be P and Q (they both lie on L1). Then L1∪ ((L2 \ t)∪E) consists
of two simple cycles that satisfy all the conditions described in the case above; hence, this
case may not occur.

We now consider the case in which one of the annuli is contained in the other. Without
loss of generality, assume that A1 ⊂ A2 and that E = L1 ∩ L2 is a piecewise arc. Let I and
J be the endpoints of E. The link of the vertex I must contain a two-cell, included in A2,
where one of its edges connects a vertex in A1 to a vertex in A2 \ (A1∪L1). This edge crosses
L1; hence one of these vertices has g-value which is larger than l and the other has g-value
which is smaller than l; this is absurd, since by the maximum principle all the vertices in A2

which do not belong to g−1(l) must have their g value strictly smaller than l. It may also
be the case that L1 ∩ L2 = {P1, P2, . . . , Pm} where m ≥ 1 is an integer and the points Pi
are oriented clockwise. Note that we allow all the Pi’s to be a single vertex. Consideration
of the link of any of the Pi’s, and an argument similar to the one above, leads again to a
violation of the maximum principle.

Finally, assume that L1∩L2 = ∅. Observe that A2\A1 is an annulus; both of its boundary
curves have g value l. By a construction analogous to the one described before Definition 2.7,
we obtain a new BVP problem defined on a cellular decomposition of (A2 \A1)∪L1∪L2. Its
solution is harmonic on A2 \A1 and has the same value on the boundary components; hence
it is the constant function. The cellular decomposition of the annulus contains edges (part
of edges) or vertices (and perhaps both) of the initial cellular decomposition. Moreover, the
values of the solution and g coincide on (A2 \A1)∪L1∪L2. Both cases lead to the conclusion
that connected pieces of edges of the initial cellular decomposition in the annulus have the
same g-value, which is absurd.

�

Theorem 2.15. Let L be a connected level curve for g. Then each connected component of
L is a generalized piecewise bouquet of circles.

Proof. First, we only use the fact that L is a closed polygonal line. Let S be the collection of
all the self intersection points of L. By definition, edges of the polygonal (closed) curve L may
cross only at points from S. If L is simple, the assertion follows immediately. Assume that
L is not simple. It is well known that we may express L as a union of simple close polygonal
curves. The intersection of any two cycles in this decomposition is a union of vertices and
edges. Proposition 2.14 forces restrictions on any such decomposition. In particular, any
two simple cycles in such a decomposition are either disjoint or intersect in a single vertex,
none of which is contained in the annuli bounded by the other. The assertion of the theorem
follows immediately. �
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Figure 2.16. Level curves
in a pair of pants

Figure 2.17. Level curves
in a 7 connected domain

Figure 2.18. A non-possible level
curve in a 6 connected domain

Remark 2.19. Our interest here is in the existence of a decomposition of the level curve into
simple pieces. One may also consider the question, or rather a series of questions, regarding
a decomposition of the non-simple polygon determined by a general closed polygonal curve.
For many deep questions and an excellent survey on this interesting subject (some of the
questions involved are known to be NP), see for instance [22].

The topological structure of a general connected component of a level curve L (Theo-
rem 2.15) means that the complement of L in Ω ∪ ∂Ω is composed of a bounded domain
(which is a disjoint union of annuli) in which all vertices have g-values smaller than the g-
value of L, and a second domain whose boundary consists of L and possibly other curves in
∂Ω), where L is in the boundary of both. Following a construction similar to the one preced-
ing Definition 2.7, we may now define two modified conductance functions and two solutions
of D-BVP problems. By abuse of notation, we call the first domain O1, the second O2,
and we let CO1 , CO2 , g1, g2 be the analogous quantities. The corresponding two new cellular
decompositions and their union will henceforth be called the induced cellular decomposition.

Theorem 2.20. Let L be a level curve for g. Then the following equality holds

(2.21) lO1(L) = lO2(L),

where the left-hand side denotes the length of L measured with respect to the flux-gradient
metric induced by g1, and the right-hand side denotes the length of L measured with respect
to the flux-gradient metric induced by g2.



12 SA’AR HERSONSKY

Proof. First, let us assume that L is simple and corresponds to the g-value h. Since L is at
combinatorial distance at least one from any other level curves of g of the same value, the
1-combinatorial neighborhood of L in O2 is comprised of vertices that are of g-values greater
than h.

Let x ∈ T (0) ∩ L. Let y1, y2 be its neighbors in L, {x1, . . . , xm} in O1 and {z1, . . . , zk} in
O2. Since g is harmonic at x we have

(2.22) 0 = ∆g(x) =
∑
y∼x

c(x, y) (g(x)− g(y)) .

Hence, (since g(x) = g(y1) = g(y2))

(2.23) 0 =
m∑
i=1

c(x, xi) (g(x)− g(xi)) +
k∑
j=1

c(x, zj) (g(x)− g(zj)) .

Let x ∈ TO1 ∪ TO2 be a new vertex in L (that is x 6∈ T (0)) with v ∈ O1 and u ∈ O2. We
have

(2.24)
∂g1

∂n
(O1)(x) = c̃(v, x)(g(x)− g(v)) = c(u, v)(g(u)− g(v)),

and

(2.25)
∂g2

∂n
(O2)(x) = c̃(u, x)(g(x)− g(u)) = c(u, v)(g(v)− g(u)).

By summing the three equations above over all vertices in L, the assertion follows.
By combining the arguments above with the topological structure of a general level curve

provided by Theorem 2.15 and a simple modification at singular vertices along L, we will
now treat the second case. Let us assume that L is not simple. Recall that a level curve
may intersect itself only at a vertex. Let S = {v1, . . . , vm} be all such intersection points
and {Indf (v1), . . . , Indf (vm)} be their indices respectively. For a vertex x ∈ L (of the initial
triangulation or the induced one) which is not in S (note that Indf (x) = 0), the arguments
above leading to Equation 2.22 go through precisely in the same manner and yield (with
O1,O2 modified as explained immediately after Remark 2.19) the same conclusion.

Let v ∈ S. Then v is in the intersection of C1, . . . , Cl piecewise simple circles where, l =
Sgcg(v)/2 circles. Let {xi1, . . . , xik(i)} be the neighbors of v in O1 ∩ interior(Ci), {y1, . . . , ym}
the neighbors of v in L and {z1, . . . , zp} in O2. Since g is harmonic at v, we may now modify
slightly Equation (2.23). Since g(v) = g(y1) = . . . = g(ym), we obtain

(2.26) 0 =
l∑

j=1

k(j)∑
i=1

c(v, xji )
(
g(v)− g(xji )

)
+

p∑
j=1

c(v, zj) (g(v)− g(zj)) .

The assertion of the theorem now follows by summing over all the vertices in L. Finally, if L
has several connected components, the assertion of the theorem follows by addition over each
component (which must be at combinatorial distance greater than one from each other).

�

Remark 2.27. We now wish to start using Theorem 2.3 and Remark 2.5. One should note
that since boundary components are at the same g-level, a modification is needed. This is
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done in the following way. Along each boundary component, add a piecewise linear curve
homotopic to it, and at combinatorial distance which is smaller than one. This can be done
in such a way that there is exactly one sign change at each new vertex (not taking into
account vertices on the boundary). Let Ω̃ ∈ Ω be the region bounded by these curves.
Doubling along the boundary of Ω̃ gives a surface without boundary with all of its singular
vertices identical to those of g, for which the above mentioned theorem may be applied.

We end this section with a useful property of level curves. This property is essential in
the proofs of Theorem 0.1 and Theorem 0.2. In the course of these proofs, we will need to
know that there is a singular level curve which encloses all of the interior components of
∂Ω. This level curve (which is necessarily singular) is the one along which we will cut the
surface. In the inductive process, we keep cutting along such level curves over domains of
fewer boundary components until the remaining pieces are annuli.

Proposition 2.28. With notation as above, there exists a singular level curve which contains
in the interior of the domain it bounds, all of the inner boundary components of ∂Ω. Such
a level curve is unique.

Proof. We argue by contradiction. Throughout the proof, we use the topological structure of
level curves provided by Theorem 2.15. Suppose that the first assertion of this proposition
is false. Then every singular level curve omits at least one inner boundary component. Let
L be such a curve. Suppose that L omits k ≥ 1 boundary components and contains l ≥ 2
boundary components in its interior, where k+ l = m−1. Let {v1, v2, . . . , vn} be the singular
vertices that belong to L; let {w1, w2, . . . , wm} be the singular vertices in the interior of L.
It is easy to see that (for example by induction)

(2.29)
∑

x∈{w1,...,vn}

Indg(x) = 1− l.

By Theorem 2.3 we must have additional singular vertices {q1, . . . , qs} such that

(2.30)
∑

y∈{q1,...,qs}

Indg(y) = (1− k)− 1.

Let L1 be a singular level curve that has q1 as a singular vertex. Suppose that L1 does not
enclose L in its interior. Then

(2.31) Indg(q1) ≤ (1− k),

with equality if and only if L1 encloses all k boundary components. Therefore, we must have
s = 2, and a singular level curve that passes through q2 will necessarily enclose all interior
components of ∂Ω. Hence, we arrive at a contradiction.

Assume now that L1 encloses L and t ≥ 1 out of the k boundary components. Let
{q1, q2, . . . , qs} be the singular vertices on the various cycles on L1 which do not belong to
the cycle containing L or its interior. It is easy to see that

(2.32)
∑

z∈{q1,q2,...,qs}

Indg(z) = (1− t).

By Theorem 2.3 we must have additional singular vertices {p1, . . . , pn} such that
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(2.33)
∑

t∈{p1,...,qn}

Indg(t) = −1− (k − t).

We now repeat the process above with L1 replacing L, l+ t replacing l and k− t replacing k.
After finitely many times (at most k − 1), we must end up with a singular level curve with
a single singular vertex of index −2 that encloses all inner boundary components of ∂Ω.

�

We are now concerned with geometric properties of the set of lengths of level curves. This
is significant for the applications. For example, even in the case of an annulus (which is the
subject of Theorem 0.4), it is not clear that level curves in the same homotopy class have the
same length. Since we wish to map a given annulus to a straight cylinder, we must verify
this property and its suitable generalizations.

Theorem 2.34. There exists a finite set of non-negative numbers K such that the following
holds:

(1) K contains 0, and k is its maximal element,
(2) K is monotone decreasing,
(3) any level curve corresponding to a g-value which does not belong to K is simple, and
(4) any component of a level curve, which corresponds to a g-value which is strictly

between any two values kn > km in K, such that kn−km is minimal, and is contained
in a unique simple cycle Cn determined by kn, has its l1-length equal to that of Cn.

(5) Moreover, the length of Cn is equal to the length of the component of g−1(km) which
it encloses.

Proof. We let K denote the set of critical values of g union k and 0; this gives assertion
(1). Since χ(Ω ∪ ∂Ω) is negative and the index of each singular vertex is less than or equal
to −1, Theorem 2.3 implies that the number of singular vertices, and hence the number of
corresponding critical g-values, is finite. Assertion (2) follows by ordering. Assertion (3) is
the content of Lemma 2.8. We now turn to proving (4). Let L be a connected component
of a level curve as described in (4). By the structure theory provided in Theorem 2.15 and
the maximum principle, L is contained in a unique simple cycle, part of the bouquet which
composes g−1(km). Let Cn denote this cycle. We first assume that the combinatorial distance
between L and Cn is greater than or equal to 2. We apply the construction that precedes
Definition 2.7 to the level curves Cn and L and the annulus AL,Cn enclosed by them. By
abuse of notation, we will keep denoting the modified set of vertices by T (0).

Let F = FCn,L denote the subset of T (0)∩AL,Cn . Since the combinatorial distance between
Cn and L is greater than or equal to 2, it follows that

(2.35) F 6= ∅ and that δ(F ) = {v ∈ T (0) : v ∈ Cn ∪ L}.

Recall that g1, the modified solution of the D-BVP, is defined on F ∪ δ(F ) by requiring
that g1 is harmonic (with respect to the modified conductance function) in F , g1|L = g|L and
g1|Cn = g|Cn . By the uniqueness of the D-BVP solution, it is clear that g1 = g|F . Note that
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F ◦ = F is the set of vertices in F which do not belong to δ(F ). We apply Proposition 1.4
(the first Green Identity) to F with u = g1 and v ≡ 1. Equation (1.5) then gives

(2.36) 0 =
∑
x∈δ(F )

∂g1

∂n
(F ◦)(x).

Hence

(2.37) 0 =
∑
x∈Cn

∂g1

∂n
(F ◦)(x) +

∑
x∈L

∂g1

∂n
(F ◦)(x),

which implies that

(2.38)
∑
x∈L

∂g1

∂n
(F ◦)(x) = −

∑
x∈Cn

∂g1

∂n
(F ◦)(x).

It follows that, with respect to the flux-gradient metric (see Equation (1.11)), L and Cn have
the same length. We now deal with the case that the combinatorial distance between Cn and
L is less than 2. While we wish to use again the first Green Identity, care is needed since F
is empty in this case. We add a vertex on each edge in the modified cellular decomposition
that has a vertex v on L and a vertex u on Cn. The value of g1(t) is defined by the value of
g1 on this edge and we also let

(2.39) ˜̃c(v, t) =
c̃(v, t)(g1(v)− g1(u))

g1(v)− g1(t)
and ˜̃c(u, t) =

c̃(u, t)(g1(u)− g1(v))

g1(u)− g1(t)
,

where c̃(v, t) and c̃(u, t) are defined as in equation (2.6) with t replacing x. We keep all
conductance functions on other edges unchanged.

By applying again the existence and uniqueness theorems in [3], we obtain a solution g2

of a new D-BVP defined on AL,Cn by requiring that g2|L = g1|L, g2|Cn = g1|Cn and that g2

is harmonic in AL,Cn . It follows that g2 is g1 on all vertices in T (0) and is modified so as to
have the values of g1 on all vertices defined above. It is easy to verify (using Equation 2.6
and Equation 2.39) that

(2.40)
∂g2

∂n
(AL,Cn)(v) =

∂g1

∂n
(AL,Cn)(v) and

∂g2

∂n
(AL,Cn)(u) =

∂g1

∂n
(AL,Cn)(u).

Assertion (5) is proved by following the same techniques that were used in proving assertion
(4) and Theorem 2.15.

�

Remark 2.41. Observe that once assertion (5) is proved, in order to prove (4), one needs only
add at most one vertex on each edge whose vertices lie on Cn and g−1(km) respectively. Also,
the same techniques employed in the proof of assertion (4) allow one to get equality between
the sum of the l1-lengths of all the components for a non-singular level curve enclosed in a
simple cycle and the l1-length of this cycle. Finally, the case g−1(0) was not stated separately,
yet it similarly gives that the sum of the l1-lengths of the inner boundary components of
∂Ω equals the l1-length of the outer boundary. We will revisit this last point in the proof of
Theorem 0.1.
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3. the case of an annulus

In this section we prove Theorem 0.4. The proof consists of two parts. First, we will show
that there is a well-defined mapping from T (1) into a set of (Euclidean) rectangles embedded
in the cylinder SA. The crux of this part is the fact that level curves for g have the same
induced length (measured with the l1 metric, see Remark 2.41) and a simple application of
the maximum principle. Second, we will show that the collection of these rectangles forms
a tiling of SA with no gaps and no overlaps. This is a consequence of the first part and an
energy-area computation. The latter follows by our construction, the dimensions of SA, and
the first Green identity (see Theorem 1.4).

Figure 3.1. Level curves
in an annulus

Given a straight Euclidean cylinder of height h, we will endow it with coordinates arising
naturally from S1 × [0, h]. The boundary component corresponding to h will be called the
top and the other one will be called the bottom. Before providing the proof, we need a
definition which will simplify keeping track of the mapping f .

Definition 3.2. A marker on a straight Euclidean cylinder is a vertical closed interval which
is the isometric image of θ × [a, b], for some θ ∈ [0, 2π) and [a, b] ⊂ [0, h] with a < b. The
marker’s uppermost end-point corresponds to (θ, b) and its lowest end-point to (θ, a).

Proof of Theorem 0.4. Let SA be a straight Euclidean cylinder with height H = k and
circumference

C =
∑
x∈E1

∂g

∂n
(x).

Let L = {L1, . . . , Lk} be the level sets for g corresponding to the vertices in T (0) arranged
in a descending g-values order. We place a vertex at each intersection of an edge with an
Li, i = 1, . . . , k,, and if necessary more vertices on edges so that any two successive level
curves in L are at combinatorial distance (at least) two. We call the first group of added
vertices type I and the second type II (recall that conductance along edges are changed as
well, according to the discussion preceding Definition 2.7). In particular, the assertions of
Theorem 2.34 and Remark 2.41 hold. Since χ(A) = 0 and the index of a singular vertex is
always negative, the index formula (Theorem 2.3) prevents the existence of singular vertices
in A. Therefore, K = {0, k}, and furthermore the length of any g-level curve is equal to C.
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Let the vertices {x1, . . . , xp} in E1 = L1 be ordered counterclockwise (and on any level
curve), starting with x1. Let {y1, y2, . . . , yt} be its type I neighbors in the induced cellular
decomposition oriented clockwise (which will always be the ordering for neighbors). We
identify x1 with 0 × k in the coordinates above. We associate markers {mx1,y1 , . . . ,mx1,yt}
with x1 in the following way. The length of marker mx1,ys , for s = 1, . . . , t, is equal to (the
constant) g(x1)− g(ys) and its uppermost end-point is positioned at the top of SA at

(3.3) x1 +

∑s−1
k=1 c(x1, yk)(g(x1)− g(yk))

∂g
∂n

(A)(x1)
× 2π,

measured counterclockwise. For each edge eu,v = [u, v] with g(u) > g(v), let Qu,v be a
Euclidean rectangle with height equals to g(u)−g(v) and width equals to c(u, v)(g(u)−g(v)).
We will identify a planar straight Euclidean rectangle and its image, under an isometry, in
a straight Euclidean cylinder. For s = 1, . . . , t, we position Qx1,ys in SA in such a way that
its leftmost edge coincides with mx1,ys . By construction and the position of the markers,

(3.4) Qx1,ys ∩Qx1,ys+1 = mx1,ys+1 .

Assume that we have placed markers and rectangles associated to all the vertices up to xk
where k < p; let z1 be the leftmost neighbor of xk+1 and let Qxk,v be the rightmost rectangle
associated with xk. We now position the marker mxk+1,z1 , associated with xk+1 and z1 so
that it is lined with the rightmost edge of Qxk,v and his upper end-point is at the top of SA.
We continue placing markers and rectangles corresponding to the rest of the neighbors of
xk+1. We terminate these steps when k = p. Note that the top of SA is completely covered
by the top of the rectangles constructed above where intersections between any of these (top
edges) is either a vertex or empty.

For all 1 < n < k, assume that all the markers corresponding to vertices in Ln−1 and their
associated rectangles have been placed as above in such a way that the following condition,
which we call consistent, holds. For [w, v] ∈ T (1) with g(w) > g(v) and s ∈ [w, v] a vertex of
type I, the uppermost end-point of the marker ms,v coincides with the lowest end-point of
the marker mw,s; moreover, the two rectangles Qw,s, Qs,v tile Qv,w. Informally, this condition
allows us to “continuously extend” rectangles associated with edges that cross level curves
along these, and therefore will show that edges in T (1) are mapped (perhaps in several steps)
onto a unique rectangle.

We will now show how to place the markers and rectangles corresponding to the vertices
of the level set Ln in a consistent way. The uppermost end-point of each marker associated
with a vertex v ∈ Ln in this level set, and any of its neighbors in Ln+1 is placed in SA
at height g(v). Observe that v is a vertex in some [qi, v], where qi belongs to Ln. Choose
among all such edges the rightmost (viewed from Ln). Let [q0, v] be this edge and let mq0,v

be its marker. Place the marker of v which corresponds to an edge [v, w] with w being the
leftmost vertex among the neighbors of v in Ln+1, so that its uppermost end-point coincides
with the lowest end-point of mq0,v. Let s0 be a vertex of type I on Ln. By definition, s0

is connected to a unique vertex v0 ∈ Ln+1 and to a unique vertex w0 ∈ Ln−1. Let sq be
the first vertex to the left of s0 of type I in Ln. By definition, sq is connected to a unique
vertex wp in Ln−1 and to a unique vertex vl ∈ Ln+1. Let {s1, . . . , sq−1} be the vertices on Ln
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between s0 and sq and let {w1, . . . , wp−1} be the vertices on Ln−1 between w0 and wp. Let
Q1 = Qw0,s0,sq ,wp be the piecewise linear rectangle enclosed by [w0, s0]∪ [wp, sq]∪Ln−1 ∪Ln,
and which contains {s0, . . . , sq}, and let Q2 = Qs0,v0,sq ,vl

be the piecewise linear rectangle
enclosed by [s0, v0] ∪ [sq, vl] ∪ Ln ∪ Ln, and which contains {s0, . . . , sq}.

In order to prove that the consistent condition holds for all markers and rectangles created
in this step, it suffices to prove it at sq, assuming (with out loss of generality) that the
first marker we placed in a consistent way is ms0,v0 . By construction (see in particular
Equation (3.3)) we need to prove that

p−1∑
i=1

∂g

∂n
(Q1)(wi) +

∂g

∂n
(Q1)right(w0) =(3.5)

q−1∑
i=1

∂g

∂n
(Q2)(si) +

∂g

∂n
(Q2)right(s0),

where the subscript “right” indicates that neighbors in the expressions are taken from Q1

(first line) or Q2 (second line) only. It is easy to check that since the modification of g is
harmonic at each si, i = 0, . . . q, and since s0 and sq are type I vertices, Equation (3.5) holds.

To conclude the construction, continue as above, exhausting all vertices in Ln. By the
maximum principle, our construction, and the fact that all level curves have their flux-
gradient length equal to C, it is clear that the union of the rectangles is contained in SA.

1

X 1

y2
y3

X1
y1

X 2

E 1
E 2

Qx1y2

Qx 1 y 1 Qx 3y

!

Figure 3.6. Several markers and rectangles on the Euclidean cylinder after
the completion of the construction.

We now prove that the collection of rectangles constructed above tiles SA leaving no gaps.
Without loss of generality, suppose that the collection of rectangles does not cover a strip
of the form [θ1, θ2] × [h0, h1] in SA, where 0 ≤ θ1 < θ2 ≤ 2π and 0 ≤ h0 < h1 ≤ k. By
harmonicity, there exists at least one path whose vertices belong to T (0) such that the values
of g along this path are strictly decreasing from k to 0.

In particular, the value h1 is attained on some edge or vertex of this path. By construction,
a gap in a g-level curve (i.e. an arc of level curve which is not covered by the top edges of
rectangles) never occurs when h1 is the g-value associated to a vertex in the modified cellular
decomposition. Hence, we may assume that h1 is attained in the interior of an edge. Let
Lh1 be the corresponding level curve. Recall that Lh1 is simple and closed (as are all other
level curves of g; see Lemma 2.8). We now follow the construction preceding Definition 2.7
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and let {u1, u2, . . . , uq} be all the new vertices on Lh1 , that is we place a vertex at each

intersection of an edge in T̃ (1) with Lh1 . As mentioned in the first paragraph of the proof,
the flux-gradient length of Lh1 is equal to C. Moreover, this length is equal to

(3.7)

q∑
i=1

∂g

∂n
(O1)(ui),

where O1 is the interior of the annulus enclosed by Lh1 and E2 (see the discussion proceeding
Definition 2.7). In particular, we may now place markers and rectangles associated to the
collection of vertices {u1, u2, . . . , uq} so that Lh1 is covered by the top edges of these rectan-
gles. Recall that up to this moment, markers and rectangles were associated only to vertices
of type I in addition to those in T (0). It is very easy to check that this can be done in a
consistent way (using Equation (2.6)). Since g is extended affinely over edges, every value
between h0 and h1 is attained by g. Repeating this argument shows that all level curves are
covered by rectangles. Hence the collection of rectangles leaves no gaps in SA.

Using an area argument, we now finish the proof by showing that there is no overlap
between any two of the rectangles. Let R be the union of all the rectangles. By definition,

(3.8) Area(R) =
∑

[x,y]∈T̃ (1)

c(x, y)(g(x)− g(y))(g(x)− g(y)).

Note that the sum appearing in the right-hand side of Equation (3.8) is computed over
the induced cellular decomposition. A simple computation (using again Equation (2.6))
and the fact that the construction is consistent shows that this sum is equal to the one
taken over [x, y] ∈ T (1). Hence, the right-hand side of this equation is the energy E(g)
(see Definition 1.1). Therefore, by the first Green identity, applied with u = v = g (see
Theorem 1.4), and the dimensions of SA, we have

(3.9) E(g) = Area(R) = Area(SA).

Hence, since the rectangles do not overlap, they must tile SA. It is also evident that the
mapping f constructed above is energy preserving.

�

4. the case of an m-connected bounded planar region, m > 2

There is a technical issue which we need to address in the proofs of Theorem 0.2 and The-
orem 0.1. Since Proposition 1.4 is applied all along, we must make sure for example, that the
combinatorial distance between any two distinct level curves is at least two. Therefore, one
adds as many vertices of type I and type II as needed, and modifiy conductances accordingly
(as done at the beginning of the proof of Theorem 0.4) until the assertions of Theorem 2.34
and Remark 2.41 hold.

4.1. Pair of pants. In this subsection we provide a proof of Theorem 0.1. One interesting
ingredient of the proof is the construction of a good mapping (in the sense of Theorem 0.4)
from a planar annulus with one singular boundary component into a Euclidean cylinder
having one boundary component, a singular curve and the other one which is simple. The
construction of the mapping f is then achieved by gluing two Euclidean cylinders to the one
above along the singular component.
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Proof of Theorem 0.1.
We extend the solution g to an affine map ḡ : |P ∪ ∂P | → R+ ∪ 0 and use ḡ as a height

function for |P ∪ ∂P |. This gives a two-dimensional polyhedron, denoted by P̄g, which is
homotopically equivalent to P . We have

(4.1) χ(P̄g) = χ(P) = −1.

Double P̄g along its boundary to obtain a genus 2 closed surface which will be denoted by
DP . The Index Theorem (see Theorem 2.3) asserts that

(4.2)
∑
v∈DP

Indg(v) = −2.

It follows from Equation (2.1) and a simple Euler characteristic computation that we must
have a single vertex u ∈ P̄g whose index equals −1, which means that Sgc(u) = 4. Let L(u)
be the figure eight curve corresponding to the value ḡ(u). Then L(u) = LI ∪ LII , where LI
and LII are two simple cycles intersecting at u (using here the assertion of Theorem 2.15).

Moreover, since E1
2 and E2

2 are the only inner components of ∂Ω, by applying Lemma 2.8
we may assume that E1

2 is contained in LI and E2
2 is contained in LII . By cutting along L(u),

we can decompose Ω ∪ ∂Ω into three components. The first, denoted by Ω1, has boundary
components E1 and L(u). The second, denoted by Ω1

2, has boundary components E1
2 and LI ,

and the third, denoted by Ω2
2, has boundary components E2

2 and LII . Note that the interiors
of these components are all homeomorphic to S1 × (0, 1), and moreover that Ω1

2 and Ω2
2 are

each homeomorphic to an annulus, however χ(Ω1) = −1. Therefore, Ω1 may be viewed as
an annulus with one singular boundary component, or equivalently as a really short pair of
pants, i.e. one with no cuffs. We now define three D-BVPs on the above domains following
the discussion preceding Definition 2.7. Note that an essential property of L(u), which is
given by Theorem 2.15, allows us to define a D-BVP on Ω1.

Let g1 be the solution on Ω1, g1
2 on Ω1

2 and g2
2 on Ω2

2. By Remark 2.41, we have that the
lengths of LI and E1

2 , with respect to the flux-gradient metric induced by g1
2, are both equal

to

(4.3)
∣∣ ∑
x∈E1

2

∂g

∂n
(Ω1

2)(x)
∣∣.

Similarly, we have for Ω2
2 that the lengths, with respect to the flux-gradient metric induced

by g2
2 of LII and E2

2 , are equal to

(4.4)
∣∣ ∑
x∈E2

2

∂g

∂n
(Ω2

2)(x)
∣∣.

Finally, by applying Theorem 2.34 with Cn = E1 and L = L(u), we have that the lengths
of E1 and L(u), with respect to the l1 gradient metric induced by g1, are equal to

(4.5)
∑
x∈E1

∂g

∂n
(Ω1)(x).

We now turn to the construction of (SP , f). First, apply Theorem 0.4 to Ω1
2 and to Ω2

2.
The outputs are two straight Euclidean cylinders SΩ1

2
and SΩ2

2
, two mappings fΩ1

2
: Ω1

2 → S1

and fΩ2
2

: Ω2
2 → S2 (where the maps, their domains and the cylinders are described in detail
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E
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L L

1
2

f(u)f(u)

f(u)

f(u)

f(u) f(u)

f(u) f(u)

Figure 4.6. The construction of the Euclidean pair of pants with one singular point.

in Theorem 0.4). Second, we wish to apply Theorem 0.4 to Ω1. However, one boundary
component of it (L(u)) is singular at u. Note that the construction described in the proof of
Theorem 0.4 will go through for any annulus contained in Ω1 with one boundary component
being E1 and the other being Lg(L(u))+ε (with ε > 0 arbitrarily small). Thus, we obtain a
sequence of Euclidean cylinders that have the same circumference (the flux-gradient metric
length of E1) and their heights converge to k − g(L(u)).

As ε → 0, the level curves corresponding to g(L(u)) + ε converge geometrically to L(u).
Hence, the limiting cylinder S0 is a Euclidean cylinder with one singular boundary compo-
nent (bottom). We call one boundary component of this cylinder top and the other bottom.
Specifically, S0 is obtained by taking a Euclidean cylinder of height k− g(L(u)) and circum-
ference which is equal to the flux-gradient metric length of E1, picking two points on one
boundary component of it at a distance which equals the flux-gradient metric length of LI ,
and identifying them. We will abuse notation and denote this point by u. Since identification
occurs only at the boundary, the tiling persists in the limit. We denote by fΩ1 the mapping
given by Theorem 0.4, modified on the bottom as above. Let

(4.7) f = fΩ1 ∪ fΩ1
2
∪ fΩ2

2
,

where the domain of f is Ω1 ∪ Ω1
2 ∪ Ω2

2 and its image is obtained by gluing isometrically
S1 and S2 to the bottom in such a way that the intersection consists of only one point (see
Figure 4.6), denoted by f(u). By Remark 2.41, we have that the length (measured with
the l1-induced metric) of the bottom of S0 is equal to the sum of the lengths of the tops
of the two cylinders S1 and S2 (one can also obtain this by applying Proposition 1.4 and
Equations (4.3)-(4.5) directly). Furthermore, we require the gluing to be consistent; i.e the
gluing described above respects rectangles corresponding to edges which cross L(u) (see the
Proof of Theorem 0.4). The fact that this can be done may be justified by basically the same
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argument appearing before and after Equation (3.5). Note that one consequence of this is
that f(u) is uniquely determined (the modified g being harmonic being the key issue).

It is easy to check that the only cone angle is at this point and is equal to 4π. The
mappings fΩ1

2
, fΩ2

2
are energy preserving in the sense explained in Theorem 0.4; the mapping

fΩ1 is also energy preserving (since the identification is done on bottom only). Since the
gluing is by isometries, and the cylinders involved meet only at one vertex, the mapping f
is energy preserving.

�

4.2. The case of an m-connected domain, m > 3. In this subsection we provide a proof
of Theorem 0.2. The proof is a modification of Theorem 0.1 with some bookkeeping and
successive changes of the initial D-BVP.
Proof of Theorem 0.4. Let L1 be the unique level curve whose existence is guaranteed
by Proposition 2.28. Let Ω1 be the domain bounded by E1 and L1. Observe that Ω1 is
homeomorphic to S1 × (0, 1). Suppose that L1 = l1 ∪ l2 . . . ∪ lk, where each li is a simple
cycle (for i = 1, . . . , k), where any two of these cycles are either disjoint or intersect at a
singular vertex in T (0) (see Theorem 2.15). Let U = {u1, . . . , um} be the set of all singular
vertices along L1 with {Indg(u1), . . . , Indg(um)} being their indices, respectively.

The interior of each li, which will be denoted by l◦i , is a qi-connected domain with qi <
m − 1, for i = 1, . . . , k, (unless k = 1). We now modify the initial D-BVP on Ω1, li and l◦i
as described in the discussion preceding Definition 2.7, and we obtain k + 1 new harmonic
functions: g0 which is defined on E1,Ω1 and L1, and g1, . . . , gk defined on l1, . . . , lk and their
interiors, respectively.

Recall that modifications are made by adding vertices to T (0) along the li’s and by defining
conductance along new edges: those which cross the li’s (See Equation (2.6)). By part (5)
of Theorem 2.34 and Remark 2.41, we have that the length of L1, with respect to the flux-
gradient metric induced by g0, is equal to the length of E1 with respect to the flux-gradient
metric induced by g0. Hence both are equal to the length of E1 with respect to the initial g
metric. We record this as

(4.8) lengthg,l1(E1) = lengthg,l1(L1).

By using gi in the interior of each li, we now choose a singular curve enclosing all of its
qi − 1 boundary curves (see Proposition 2.28). The result is a set of singular level curves
W = {W1, . . . ,Wn} and the set of singular vertices V = {v1, . . . , vp} they contain with their
associated indices I = {Indg(v1), . . . , Indg(up)}. Each simple cycle of a singular level curve
Wj contains sj < qi boundary curves unless W ◦

j is an annulus. As above, we have only added
vertices on the li’s, assigning each one of the vertices on a specific li, the g(li)-value. The
conductance constants are changed only along new edges, those which cross li, according to
Equation (2.6). Hence, the set W coincides with the set of singular level curves of g minus
L1 (similar statements hold for V and I).

We repeat this process (at most) finitely many times, modifying (if needed) the cellular
decomposition and defining conductance constants according to Equation (2.6), until the
interior of each simple cycle of each singular level curve is an annulus. At each step, we
obtain new harmonic functions defined on domains with fewer boundary components. An
equation analogous to Equation (4.8) holds for each simple cycle which is a component of
a singular level curve and the nearest singular level curve it contains. That is, its length
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measured by the flux-gradient metric induced by the harmonic functions defined on its
interior is equal to the length of the singular level curve, both measured by the harmonic
map defined in the interior of the simple cycle (see part (5) of Theorem 2.34). In turn, they
are equal to the length of the simple cycle measured by the harmonic function defined on its
exterior (see Theorem 2.20).

It is evident from the proof of Proposition 2.28, the disjointness of level curves which
correspond to different g-values, and the maximum principle that there is a well-defined
hierarchy on the set of singular level curves. Each component of a singular level curve, say
g−1(km), km ∈ K, is contained in the interior of a domain whose one component is a unique
simple cycle. This cycle belongs to a unique singular curve, say g−1(kn), kn ∈ K, kn > km (or
E1). Simple cycles corresponding to level curves are either contained in a domain bounded
by a simple cycle which is part of a singular level curve, or are parts of singular level curves
as is detailed in Theorem 2.15.

We now turn to the construction of SΩ and the mapping f . We start with a straight
Euclidean cylinder, CE1,L1 , of height k − g(L1) and circumference which is equal to

(4.9)
∑
x∈E1

∂g

∂n
(x).

Since L1 is a generalized bouquet of circles, we can select a finite number of points in the
bottom and identify subsets of them in such a way that the quotient is topologically and
metrically isomorphic to L1.

W

U

V

V

U U

W

W

U

V

Figure 4.10. A quotient of a boundary component of a Euclidean cylinder
yielding a generalized bouquet of circles

As in the proof of Theorem 0.1, we wish to apply Theorem 0.4 to Ω1∪∂Ω1 (∂Ω1 = E1∪L1).
Since L1 is singular, we may not apply it directly. Instead, we follow the argument carried out
in the proof of Theorem 0.1. All level curves (which are simple) corresponding to g(L1) + ε,
with ε > 0 being small, will have the same length as L1 (see part (5) of Theorem 2.34); hence,
as ε → 0, the sequence of Euclidean cylinders (guaranteed by Theorem 0.4 applied to the
sequence of annuli bounded by these level curves and E1) with their tops being fixed, heights
equal to k− (g(L1) + ε), and circumferences equal to

∑
x∈E1

∂g
∂n

(x), converges to C̃E1,L1 with
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the top persisting in the limit and the bottom replaced by its quotient as explained above.
We denote the mapping given by Theorem 0.4 and modified as above on the bottom by fΩ1 .

For each li, i = 1, . . . k, there are two cases to consider. First, suppose that l◦i does not
contain any singular level curve. Without loss of generality, let the unique boundary curve it
contains be Ei

2. By assertion (4) of Theorem 2.34, we conclude that the lengths of Ei
2 and li

are equal (measured with the gi-induced flux-gradient metric). Thus, Ai = l◦i ∪ li ∪Ei
2 is an

annulus with two (non-singular) boundary components. We may therefore apply Theorem 0.4
and obtain a mapping fi : Ai → Cli,Ei

2
(= SAi

). We now attach the top of the resulting
Euclidean cylinder Cli,Ei

2
to li by an isometry which is consistent. We conclude that the

gluing may be taken as such, by first arguing that the length of li measured with respect
to the flux-gradient metric induced by g0, is the same as its length with respect to the
length induced by the flux-gradient metric of gi. This is justified directly by employing
Theorem 2.20 or by using a series of equalities similar to those in Equations (4.3)-(4.5) and
the reasoning leading to them. The fact that the gluing is consistent follows from the same
arguments we have used before.

Second, assume that l◦i contains a singular curve, say Wi ∈ W . Recall that Wi is the
unique singular curve in l◦i which encloses all of the boundary curves in l◦i . With li replacing
E1, Wi replacing L1, and gi replacing g0, we repeat the construction, yielding a Euclidean
cylinder with its bottom being a singular curve as described above (in the case of L1), and a
mapping which we will denote by fli,Wi

. The cylinder C̃li,Wi
is attached to C̃E1,L1 by gluing

its top to the simple cycle corresponding to li in the quotient of the bottom of C̃E1,L1 , that

is, the singular component of C̃E1,L1 .
The above analysis is now carried out, at most finitely many times, for each li, i = 1, . . . , k,

until we are left with Euclidean cylinders having both of their boundary components non-
singular. In particular, the bottom of each cylinder is the image (under the map given by
Theorem 0.4) of Ei

2 and its length is equal to

(4.11) −
∑
x∈Ei

2

∂g

∂n
(x), for i = 1, · · · ,m− 1.

By construction, the images of E1 and Ei
2, i = 1, . . . ,m, under the maps whose construction

is described above, are the only boundary components of SΩ. The map f is the obvious
union of the collection of mappings constructed above and is analogous to the one appearing
in Equation (4.7). It is also evident that f is energy preserving in the sense described before.

We now compute the cone angle, φ(v), at a singular vertex v with Indg(v) = −n, n ∈ N. By
construction, v is the (unique) tangency point of n+ 1 Euclidean cylinders, where v belongs
to the non-singular component of each such cylinder. Hence, such a cylinder contributes π
to the cone angle at v. Recall that each such cylinder is attached (by an isometry) to the
quotient of the bottom of another Euclidean cylinder. It is easy to check that the contribution
to the cone angle at v from this Euclidean cylinder (with one singular boundary component)
is equal to n× π + π. Therefore,

(4.12) φ(v) = 2(n+ 1)π.

�
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Remark 4.13. One may also prove Theorem 0.2 by an induction on the number of boundary
components. However, the assertion of Proposition 2.28 must be used as well as an extension
of g0 to g1 over the singular curve L1. Theorem 2.20 needs to be used in order to prove
equality of the l1-length of L1 according to both the g0 and the g1 metric. Overall, we found
the proof which does not use induction conceptually more gratifying. We could also stop the
process once a planar pair of pants is encountered, thus using Theorem 0.1 directly. Finally,
Theorem 0.1 is of course a special case of the theorem above. Still, we maintain that this
special case deserves its own proof.

Remark 4.14. There is a technical difficulty in our construction if some pair of adjacent
vertices of T (0) has the same g-value (the first occurrence is in Equation (2.1)). One may
generalize the definitions and the index formula to allow rectangles of area zero, as one
solution. For a discussion of this approach and others see [23, Section 5]. Experimental
evidence shows that when the cell decomposition is complicated enough, even when the
conductance function is identically equal to 1 and the cells are triangles, such equality rarely
happens.

Remark 4.15. The existence of singular curves for g results in the fact that some rectangles are
not embedded in the target. This is evident by the proofs of Theorem 0.1 and Theorem 0.2.
Since some of the cylinders constructed have a singular boundary component, it is clear that
some points in different rectangles that lie on this level curve will map to the same point.
However, this occurs only in the situation above and since this fact is not of essential interest
to us, we will not go into more details.

Figure 4.16. Level curves for a 5 connected domain
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[13] F.R. Chung, A. Grigoŕyan and S.T. Yau, Upper bounds for eigenvalues of the discrete and
continuous Laplace operators, Adv. Math. 117 (1996), 165–178.

[14] M. Dehn, Zerlegung ovn Rechtecke in Rechtecken, Mathematische Annalen, 57, (1903), 144-
167.

[15] R. Duffin, The extremal length of a network, J. Math. Anal. Appl. 5 1962, 200–215.
[16] B. Fuglede, On the theory of potentials in locally compact spaces, Acta. Math. 103 (1960),

139–215.
[17] M. Henle, A Combinatorial Introduction to Topology, Freeman W.H., San Francisco, 1979.
[18] S. Hersonsky, Energy and length in a topological planar quadrilateral, Euro. Jour. of Combina-

torics 29 (2008), 208-217.
[19] S. Hersonsky, Boundary Value Problems on Planar Graphs and Flat Surfaces with Integer

Cone singularities II; Dirichlet-Neumann problem, Differential Geometry and its applications,
accepted for publication (February 2011).

[20] S. Hersonsky, Boundary Value Problems on Planar Graphs and Flat Surfaces with Integer Cone
singularities III; , in preparation.

[21] P. Hubert, H. Masur, T. Schmidt and A. Zorich, Problems on billiards, flat surfaces and
translation surfaces, Problems on mapping class groups and related topics, 233–243, Proc.
Sympos. Pure Math., 74, Amer. Math. Soc., Providence, RI, 2006.

[22] J. M, Keil, Polygon decomposition, In: Handbook of Computational Geometry, (Eds. J. R. Sack
and J. Urrutla), North-Holland, (2000), 491–518.

[23] R. Kenyon, Tilings and discrete Dirichlet problems, Israel J. Math. 105 (1998), 61–84.
[24] F. Lazarus and A. Verroust, Level Set Diagrams of Polyhedral Objects, ACM Symposium on

Solid and Physical Modeling, Ann Arbor, Michigan, (1999), 130–140.



DIRICHLET PROBLEM 27

[25] H. Masur, Ergodic Theory of Translation surfaces, Handbook of Dynamical Systems, Vol. 1B,
527–547, Elsevier B. V., Amsterdam, 2006.

[26] O. Schramm, Square tilings with prescribed combinatorics, Israel Jour. of Math. 84 (1993),
97–118.

[27] , P.M. Soardi, Potential theory on infinite networks, Lecture Notes in Mathematics, 1590,
Springer-Verlag Berlin Heidelberg 1994.

[28] M. Troyanov, On the moduli space of singular Euclidean surfaces, Handbook of Teichmüller
theory, Vol. I, (2007), 507–540, Eur. Math. Soc., Zürich,.
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