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Abstract. We study the growth of fibers of coverings of pinched negatively curved
Riemannian manifolds. The applications include counting estimates for horoballs in
the universal cover of geometrically finite manifolds with cusps. Continuing our work
on diophantine approximation in negatively curved manifolds started in an earlier paper
(Math. Zeit. 241 (2002), 181–226), we prove a Khintchine–Sullivan-type theorem giving
the Hausdorff measure of the geodesic lines starting from a cusp that are well approximated
by the cusp returning ones.

1. Introduction
Let M be a complete pinched negatively curved Riemannian manifold. Let π : N → M

be a Riemannian covering of M and let x0 be any point in N . Define the counting function
of π as fπ : R+ → N, with fπ (t) the number of points x in π−1π(x0) such that
dN(x0, x) ≤ t . In this paper, we study the growth of the counting function fπ . When π
is the covering defined by a cuspidal subgroup of π1M , we get estimates for the growth of
the number of horoballs in the universal cover of geometrically finite manifolds with cusps.
An application is given to a Khintchine–Sullivan-type theorem in the setting of diophantine
approximation in negatively curved manifolds as developed in [HP2].

Let π̃ : M̃ → M be a universal covering. The growth of fπ̃ has been much studied.
In particular, the estimate fπ̃ (t) ∼ ceδt as t tends to +∞ has been established in several
situations, where δ is the critical exponent of M (see §2) and c > 0 is some constant.
See [Mar] for M compact; see [Pat, Sul1] for M non-elementary, geometrically finite,
with constant curvature; see [Rob] for M non-elementary, having finite Bowen–Margulis
measure and with the length spectrum of M being non-discrete in R; see other references
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in [Rob]. When M is compact and π is normal, then the growth of fπ is equivalent to
the growth of the finitely generated group π1M/π∗(π1N) (see [GK]). We are mostly
interested in non-normal covers.

Recall that N is convex-cocompact if N contains a compact convex submanifold which
is a strong deformation retract of N . Given two maps f, g : E → R, write f ( g if there
is a constant c > 0 such that (1/c)f (t) ≤ g(t) ≤ cf (t) for every t in E.

THEOREM 1.1. Assume that M is compact, N is convex-cocompact and π is infinite-
sheeted. Then fπ (t) ( eht , where h is the topological entropy of the geodesic flow of M .

See Theorem 3.1 for a more general result (valid for Gromov-hyperbolic metric spaces).
Assume for simplicity in this introduction that M is geometrically finite and has exactly

one cusp e (see [Bow] or §2 for definitions).
As defined in [HP2, Definition 2.3], a geodesic line starting from e is rational if it

converges to e and irrational if it accumulates inside M . The depth D(r) of a rational
line r is the length of the subsegment of r between the first and last meeting point with the
boundary of the maximal Margulis neighborhood of the cusp e in M . For t ≥ 0, define
N e(t) as the number of rational lines whose depth is less than t .

Let M0 → M be the covering of M defined by any parabolic subgroup corresponding
to e of the fundamental group of M , let π̃0 : M̃ → M0 be its universal cover and let δ0 be
its critical exponent. In variable curvature, the geometry of M0 can be quite complicated
(see [DOP]). The assumptions fπ̃0(t) ( eδ0t and δ0 < δ are satisfied, for instance, if M is
a rank 1 locally symmetric space. See [DOP] for many other cases, as well as for situations
when they do not hold.

We improve the main result of [BHP], as follows (see also [Rob]).

THEOREM 1.2. If δ0 < δ, then Ne(t) ( eδt .

The main goal of this paper is the following result. Let ξ0 be any parabolic fixed point
corresponding to e. If r is a rational line, let r̃(∞) be the point at infinity of a lift of
r starting from ξ0. Let d̃e be the Hamenstädt distance on ∂M̃ − {ξ0}. Let µ̃e be the
Patterson–Sullivan measure seen from ξ0 on ∂M̃ − {ξ0} (see §2 for the definitions).

THEOREM 1.3. Assume that fπ̃0(t) ( eδ0t . Let f : R+ → R+ be a map with log f

Lipschitz. Let Ẽ(f ) be the set of points ξ in ∂M̃ − {ξ0} such that there exist infinitely many
rational lines r with d̃e(ξ, r̃(∞)) ≤ f (D(r))e−D(r). Then µ̃e(Ẽ(f )) = 0 (respectively
µ̃e(

cẼ(f )) = 0) if and only if the integral
∫ ∞

1 f (t)2(δ−δ0) dt converges (respectively
diverges).

If M̃ = H2,% = PSL2(Z), then this result is a well-known result of Khintchine
(see [Kh]). The theorem, and the following corollary, called the logarithm law for the
geodesic flow, are due to D. Sullivan [Sul2] if M has finite volume and constant curvature,
to D. Kleinbock and G. Margulis [KM] if M is a finite volume locally symmetric space and
to B. Stratmann and S. L. Velani [SV] if M is geometrically finite with constant curvature.

Endow the unit tangent sphere T 1
x (M) with the Patterson–Sullivan measure (see §2) and

denote by t *→ γv(t) the geodesic ray in M defined by v ∈ T 1
x (M).
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THEOREM 1.4. Assume that fπ̃0(t) ( eδ0t . For every x in M and almost every v in
T 1

x (M),

lim sup
t→+∞

dM(x, γv(t))

log t
= 1

2(δ − δ0)
.

This paper is organized as follows. Section 2 gives the main definitions and notations
that will be used in the paper. The main result of the paper, Theorem 1.3, is proved in §5.
The main steps are Theorem 1.2 (proved in §3) and a greatly generalized fluctuating density
result (see §4). Theorem 1.4 is then proved in §6.

2. Notation
2.1. Generalities. This section recalls well-known definitions and results regarding
negatively curved metric spaces (see [Bou, Bow]).

Let M be a complete pinched negatively curved Riemannian manifold. After
normalizing its metric, we assume that its sectional curvature K is normalized by −κ2 ≤
K ≤ −1 with 1 ≤ κ < +∞. Let π̃ : M̃ → M be a fixed universal cover, with a covering
group %.

In particular, M̃ is a proper geodesic metric space which is CAT(−1) and CATop(−κ2),
that is its geodesic triangles are more (respectively less) pinched than those in the constant
curvature −1 (respectively −κ2) space; see [GH] for definitions.

Let X be a CAT(−1) geodesic metric space. The boundary ∂X of X is the space of all
geodesic rays in X, where two rays are identified if they remain within bounded Hausdorff
distance. The set X ∪ ∂X is endowed with the cone topology.

The Poincaré series of a group G of isometries of X is defined by

PG(x, y, s) =
∑

g∈G

e−sd(x,gy)

for any x, y in X and s in R+. This series converges if s > δG and diverges if s < δG for
some δG ∈ [0,+∞], which is called the critical exponent of G. It is easy to see that δG is
independent of the points x, y.

Let a, b ∈ ∂X. Their Gromov product with respect to a base point x in X is defined by

(a, b)x = lim
t→+∞

1
2 (d(x, a(t)) + d(x, b(t)) − d(a(t), b(t))).

It is independent of the geodesic rays a, b : [0,+∞[ → X representing a, b. The visual
distance dx on ∂X is defined by

dx(a, b) =
{

0 if a = b,

e−(a,b)x otherwise.

Every isometry γ of X extends to an homeomorphism of ∂X which is an isometry between
dx and dγ x .

For ξ in ∂X, the Buseman function βξ : X × X → R is defined by

βξ (x, y) = lim
t→∞ d(x, ξ(t)) − d(y, ξ(t))

for any geodesic ray t *→ ξ(t) converging to ξ . The horospheres centered at ξ are the level
sets of x *→ βξ (x, y) (for any y ∈ X), and the horoballs are the sublevel sets.
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For s in R+, a Patterson–Sullivan (family of) measure(s) of dimension s for a group G

of isometries of X is a family of absolutely continuous finite measures (νx)x∈X on ∂X such
that
(1) (dνx/dνy)(ξ) = e−sβξ (x,y) for every x, y in X and ξ in ∂X, and
(2) g∗νx = νgx for every g in G.
Note that (νx)x∈X is uniquely defined by νx0 , for x0 any base point in X.

Given a Patterson–Sullivan family of measures (µx)x∈M̃ for %, for every y in M , the
unit tangent sphere T 1

y M can be endowed with a measure, also called a Patterson–Sullivan
measure, in the following way: take a lift ỹ of y in M̃ , identify T 1

y M with T 1
ỹ M̃ by the

covering map, and T 1
ỹ M̃ with ∂M̃ by the endpoint map, which maps a unit vector to the

point at infinity of the geodesic ray it defines. The measure µỹ on ∂M̃ pulls back to a
measure on T 1

y M , which by the equivariance property of the Patterson–Sullivan measures
does not depend on the chosen lift ỹ.

Assume that X is proper. Let G be a discrete subgroup of isometries of X. The limit set
*G is the set Gx ∩ ∂X, for any x in X. The group G is non-elementary if *G contains
at least three points. If G is non-elementary, the convex hull in X of the limit set of G

is denoted by C*G. A point ξ in *G is a conical limit point of G if it is the endpoint
of a geodesic ray in X which projects to a path in G\X that is recurrent in some compact
subset. A point ξ in *G is a bounded parabolic point if it is fixed by some parabolic
element in G, and if the quotient (*G − {ξ})/Gξ is compact, where Gξ is the stabilizer
of ξ . The group G is geometrically finite if it is non-elementary and if every limit point of
G is conical or bounded parabolic (see [Bow] for more information). The manifold M is
non-elementary or geometrically finite if % is (as a subgroup of isometries of M̃).

Assume that the critical exponent δG of G satisfies 0 < δG < +∞. Assume that G is
of divergent type, i.e. that the Poincaré series PG(x, y, s) diverges at s = δG. If xG is a
base point in X, the measures νx for x in X may then be taken as the weak limit for some
(si)i∈N (independent of x) with si > δG tending to δG as i → +∞, of

1
PG(xG, xG, si)

∑

g∈G

e−sid(x,gxG)+gxG,

where+z is a unit Dirac mass at the point z in X.
The shadow OxA of a subset A of X seen from a point x in X ∪ ∂X is the set of points

ξ /= x in ∂X such that the (unique) geodesic ray or line from x to ξ has a non-empty
intersection with A.

2.2. The rational and irrational lines. The content of this section is taken from [HP2],
to which we refer for proofs and complements.

Assume that M is non-elementary and has at least one cusp e, i.e. an asymptotic class
of minimizing geodesic rays in M along which the injectivity radius goes to zero. We say
that a geodesic ray converges to e if some subray belongs to the class e.

Fix ξ0 on the boundary ∂M̃ of M̃ , which is the endpoint of a lift of a geodesic ray
converging to e. In particular, ξ0 is the fixed point of a parabolic element in %. Let %0 be
the stabilizer of ξ0 in %, called a parabolic subgroup for e. We say that the cusp e (and the
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parabolic subgroup %0) is bounded if ξ0 is a bounded parabolic point for %. We denote
by δ = δ% and δ0 = δ%0 the critical exponents of % and %0 respectively. Note that
0 < δ0 ≤ δ < +∞ (see, for instance, [Bou]). If M is compact, then δ is the topological
entropy of the geodesic flow of M (see [Man]).

Let H0 be the horosphere centered at ξ0 such that the horoball HB0 bounded by H0 is
the maximal horoball centered at ξ0 such that the quotient of its interior by %0 embeds in M

by π̃ . Such a maximal horoball exists: see, for instance, [BuK]. The subset π̃(int(HB0))

of M is called the maximal Margulis neighborhood of the cusp e. Fix a base point x0 in M̃

belonging to H0 ∩ C*%.
We define the rational and irrational lines in M and the depth of a rational line as in

the introduction. If % is geometrically finite, then a geodesic line starting from e in M and
contained in π̃(C*%) is rational or irrational or converges to some cusp distinct from e.
Any rational line r in M has a lift in M̃ starting from ξ0, which is unique modulo the action
of %0. The endpoint of any such lift is the center of a horosphere γH0 for some γ in %.
The map r *→ %0γ%0 from the set of rational lines to the set of non-trivial double cosets
%0\(% − %0)/%0 is a bijection (see [HP2, Lemma 2.7]). It follows from its definition that
the depth of r is d(H0, γH0). In particular, the number Ne(t) of rational lines with depth
at most t is equal to

N ′
e(t) = Card{%0γ%0 ∈ %0\(% − %0)/%0 | d(H0, γH0) ≤ t}.

If e is a bounded cusp, then since % is discrete, the set of depths of rational lines is a
discrete subset of R with finite multiplicities (see [HP2]).

We denote by dξ0 the Hamenstädt distance on ∂M̃ − {ξ0}, which is invariant under %0,
defined by (see [HP1, Appendix], where there is a sign mistake, as well as in [HP3])

dξ0(a, b) = lim
t→+∞

e+t dr(t)(a, b),

with a, b ∈ ∂M̃ − {ξ0} and r : [0,+∞[ → M̃ a geodesic ray with origin on H0 and
converging to ξ0. Note that our distance dξ0 is only equivalent to the distance associated to
(ξ0,H0) introduced in [Ham] but since most of the inspiration comes from this paper, we
will, nevertheless, call dξ0 the Hamenstädt distance.

2.3. The parabolic manifold. It turns out that the most intrinsic way of expressing the
results mentioned in the introduction is to work with the parabolic manifold M0 = %0\M̃
(see Figure 1).

We denote by H∞, HB∞ the image in M0 (by the canonical map) of H0, HB0,
respectively. For every rational line r , we denote by Hr, HBr the image in M0 of
γH0, γHB0 for any representative γ of the double coset corresponding to r . Note that
the subsets HBr , for the rational lines r , have pairwise disjoint interiors (these are the
homeomorphic images of the corresponding open horoballs in M̃). Note that D(r) =
dM0(H∞,Hr) for every rational line r .

We denote by ∞ the point at infinity of M0 corresponding to the point at infinity ξ0 of M̃ .
Thus when M has finite volume, HB∞ = %0\HB0 is a neighborhood of the end ∞ in M0.
Under the map M̃ → M0, the set of orbits under %0 of the geodesic lines starting from ξ0
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FIGURE 1. The parabolic manifold M0.

in M̃ can be (and will be) identified with the set of geodesic lines starting from ∞ in M0.
We denote by ∂M0 the quotient %0\(∂M̃ − {ξ0}), which can be (and will be) identified
with the set of endpoints of the geodesic lines starting from ∞ in M0. The endpoint of the
rational line r (seen in M0) is the point at infinity of Hr .

Since the Hamenstädt distance dξ0 is invariant under %0, we denote by d∞ its quotient
distance on ∂M0. If L,L′ are geodesic lines starting from ∞ in M0 with endpoints ξ, ξ ′,
we define their Hamenstädt distance by d∞(L,L′) = d∞(ξ, ξ ′).

Let r be a rational line and t ≥ 0 be given. We denote by Hr,t the set of points in
HBr at distance t from Hr . Then Hr,t is the image under the projection M̃ → M0 of any
horosphere γHt , contained in γHB0 and at distance t from γH0, for any representative γ
of the double coset corresponding to r .

Let A be a subset of M0. Define the shadow of A seen from ∞ to be the set O∞A

of points in ∂M0 that are the endpoint of a geodesic line starting from ∞ and passing
through A. It is the image under the projection (∂M̃ − {ξ0}) → ∂M0 of the shadow seen
from ξ0 of the preimage of A by M̃ → M0.

Let (µx)x∈M̃ be the Patterson–Sullivan measures of dimension δ for %, constructed in
§2.1 with the basepoint x% = x0. Let p0 : ∂M̃ − {ξ0} → H0 be the %0-equivariant
homeomorphism, which maps ξ in ∂M̃ − {ξ0} to the unique intersection point of the
horosphere H0 with the geodesic line between ξ0 and ξ . Let ρ : [0,+∞[ → M̃ be
the geodesic ray, with origin x0 and converging to ξ0. As t tends to +∞, the measure
eδtµρ(t) converges weakly to a measure, denoted by µξ0 , on ∂M̃ − {ξ0}. Its support is
*% − {ξ0} and it is invariant by %0. Note that µξ0 is absolutely continuous with respect to
the Patterson–Sullivan measures; more precisely for every ξ in ∂M̃ − {ξ0} and x ∈ M̃ ,

dµξ0

dµx
(ξ) = e−δβξ (p0(ξ ),x).

By invariance, the measure µξ0 induces a measure µ∞ on ∂M0, called the Patterson–
Sullivan measure on ∂M0. Its support is %0\(*% − {ξ0}), which is compact if ξ0 is a
bounded parabolic point.
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3. Estimating the relative growth
We use [GH] for notation and background on Gromov-hyperbolic spaces.

THEOREM 3.1. Let H,G be two discrete subgroups of isometries of a Gromov-hyperbolic
proper metric space X, with H contained in G. Let x0 be any point in X and fG(t) be the
number of g in G such that dX(gx0, x0) ≤ t . Let fH\G(t) be the number of cosets Hg in
H\G such that dH\X(Hgx0,Hx0) ≤ t . If the limit set of H is properly contained in the
limit set of G, then there is a constant c > 0 such that for every t > 0,

1
c
fG(t − c) ≤ fH\G(t) ≤ fG(t).

Proof. The second inequality is obvious. Let us prove the first one. The result is easy if H

is finite; hence, we assume that H is infinite. Note that since *H is properly contained in
*G, the group G is then non-elementary. Recall that a discrete group of isometries of X

acts properly on the complement in X ∪ ∂X of its limit set.
In particular, there exists a point ξ in*G and an open neighbourhood U of ξ in X∪∂X

such that the number N of elements α in H such that αU meets U is finite. Since ξ
belongs to *G and G is non-elementary, there exists a hyperbolic element γ in G whose
fixed points are both contained in U . Since the action of γ on X ∪ ∂X has a North–South
dynamics, there exists an integer N ′ ≥ 0 such that the sets γ kU for k = 0, . . . , N ′ cover
X ∪ ∂X.

For y ∈ X and V ⊂ X, define

fV,y(t) = Card{g ∈ G : gx0 ∈ BX(y, t) ∩ V }.

Note that fH\G(t) ≥ (1/N)fU,x0(t). For a contradiction, assume that for every integer
n > 0, there exists tn ≥ n such that fU,x0(tn) ≤ (1/n)fG(tn − n). Let T =
supk=0,...,N ′ d(x0, γ

−kx0). Then

fG(tn−T ) ≤
N ′∑

k=0

fγ kU,x0
(tn−T ) =

N ′∑

k=0

fU,γ−kx0
(tn−T ) ≤ N ′fU,x0(tn) ≤ N ′

n
fG(tn−n).

Note that fG is non-decreasing. Hence, for n big enough, say n ≥ max{N ′, T } + 1, we
have

fG(tn − T ) ≤ N ′

n
fG(tn − n) < fG(tn − T ).

This contradiction ends the proof of Theorem 3.1. !

The preceding theorem (whose proof was inspired by [Rob]) and the following easy
and well-known result imply Theorem 1.1 of the introduction.

LEMMA 3.2. Let H,G be two non-elementary quasi-convex discrete subgroups of
isometries of a Gromov-hyperbolic proper metric space X, with H contained in G.
Then H has finite index in G if and only if the limit set of H equals the limit set of G. !

We now turn to the estimation of the growth of Ne(t), which is one of the main steps in
the proof of the Khintchine–Sullivan Theorem 5.1. The following lemma is obvious.
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LEMMA 3.3. For every positive constants A, δ, δ′0 with δ > δ′0, there exist an integer
N ≥ 1 and a constant B > 0 such that for all positive real sequences (bn), (cn) with
cn ≤ Aeδ

′
0n, bn ≤ Aeδn and

∑n
k=0 bkcn−k ≥ (1/A)eδn, we have

∑N
k=1 bn+k ≥ Beδn.

Proof. Let

N = E

(
1

δ − δ′0

∣∣∣∣log
A3

1 − eδ
′
0−δ

∣∣∣∣

)
+ 2,

where E(·) denotes the integer part. Note that

n∑

k=0

bkcn+N−k ≤
n∑

k=0

AeδkAeδ
′
0(n+N−k) = A2eδ

′
0(n+N) e

(δ−δ′0)(n+1) − 1

eδ−δ
′
0 − 1

≤ A2eδ
′
0N

1 − eδ
′
0−δ

eδn.

Since cn+N−k ≤ Aeδ
′
0N for k ≥ n + 1, we have

Aeδ
′
0N

n+N∑

k=n+1

bk ≥
n+N∑

k=n+1

bkcn+N−k =
n+N∑

k=0

bkcn+N−k −
n∑

k=0

bkcn+N−k

≥
(

1
A

eδN − A2eδ
′
0N

1 − eδ
′
0−δ

)

eδn,

which proves the result, by the definition of N . !

THEOREM 3.4. With the notation in §2, assume that e is a bounded cusp. If fπ̃ (t) ( eδt

and δ0 < δ, then N ′
e(t) ( eδt .

Proof. Let X = C*%, which is a convex subset of M̃, and, hence, an η-hyperbolic metric
space for some η ≥ 0. Recall that X is %-invariant and closed and contains x0.

Choose a representative for every non-trivial double coset [γ ] in %0\(% − %0)/%0 and
denote it by the same symbol, such that

d(x0, [γ ]x0) = min
α,α′∈%0

d(x0,α[γ ]α′x0).

LEMMA 3.5. The geodesic segment [x0, [γ ]x0] is at bounded distance from the common
perpendicular segment between HB0 and [γ ]HB0.

Proof. For every γ in %−%0, the common perpendicular segment [u, v] in M̃ between HB0

and γHB0 (with u ∈ HB0) is contained in X. Its length is the minimal distance between a
point in HB0 and a point in γHB0. Since %0\(H0 ∩X) is compact, by multiplying γ on the
left (respectively right) by an element of %0, the distance d(x0, u) (respectively d(γ x0, v))
can be made less than a constant. The result follows. !

By this lemma, there exists a constant τ1 ≥ 0 such that

d(x0, [γ ]x0) − τ1 ≤ d(H0, [γ ]H0) ≤ d(x0, [γ ]x0).

Since fπ̃ (t) ≤ ceδt for some c > 0, we immediately have the upper bound N ′
e(t) ≤

ceδτ1eδt . Let us now prove the analogous minoration.
The horoballs HB0 and [γ ]HB0 are convex. Then, by Lemma 3.5, the piecewise

geodesic path from α−1x0 to x0, then from x0 to [γ ]x0, then from [γ ]x0 to [γ ]α′x0,
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is quasigeodesic in X. Therefore, there exists an integer τ2, such that for every [γ ] in
%0\(% − %0)/%0 and every α,α′ in %0,

d(x0,α[γ ]α′x0) − τ2 ≤ d(x0,αx0) + d(H0, [γ ]H0) + d(x0,α
′x0)

≤ d(x0,α[γ ]α′x0) + τ2. (∗)

Since fπ̃ (t) ≥ ceδt for some c > 0 and by Lemma 3.3 (with cn = 1 for all n), there
exist an integer N and a constant τ3 > 0 such that an ≥ τ3e

δn, where

an = Card{γ ∈ % | n − N < d(x0, γ x0) ≤ n}.

Up to normalizing the metric of X by 1/N , we may (and we will) assume that N = 1.
Indeed, let Y be a proper η-hyperbolic space. Let % be a discrete group of isometries of Y

with a critical exponent δ. Let ε > 0 be a given constant. Then the metric space εY (which
is the set Y with the metric dεY = εdY ) is a proper (εη)-hyperbolic space and the group %
is still a discrete group of isometries of εY , with critical exponent δ/ε. It follows easily
that if we prove the result for (1/N)X, then it also holds for X.

Let δ′0 be a real number such that δ0 < δ′0 < δ. In particular, by the definition of δ0, we
have Card{α ∈ %0 | d(x0,αx0) ≤ n} = O(eδ

′
0n). Let

bk = Card{([γ ],α′) ∈ (%0\(%−%0)/%0)×%0 | k−1 < d(H0, [γ ]H0)+d(x0,α
′x0) ≤ k}

and

ck = Card{α ∈ %0 | k − 1 − 2τ2 < d(x0,αx0) ≤ k + 1}.

By the formula (∗), we have

an ≤
n+τ2∑

k=0

bkcn+τ2−k + Card{α ∈ %0 | n − 1 < d(x0,αx0) ≤ n}.

Since the last cardinal is O(eδ
′
0n), the assumptions of Lemma 3.3 for the sequences

(bn), (cn) are satisfied for some constant A > 0. Hence, there exist an integer N ′ and
a constant c′ > 0 such that Card{([γ ],α′) ∈ (%0\(% − %0)/%0) × %0 | n − N ′ <

d(H0, [γ ]H0) + d(x0,α
′x0) ≤ n} ≥ c′eδn.

Iterating this procedure, we get the minoration. !

Theorem 1.2 in the introduction now follows from Theorem 3.4 and the following
lemma.

LEMMA 3.6. If M is geometrically finite and if the critical exponent of each parabolic
group is strictly less than δ, then fπ̃ (t) ( eδt .

Proof. Since % contains a parabolic element, the length spectrum of M is non-discrete in
R (see [Dal]). Since M is geometrically finite and the critical exponent of each parabolic
group is strictly less than δ, it follows from [DOP] that the Bowen–Margulis measure of
M is finite. The result then follows by [Rob], as recalled in the introduction. !
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4. The fluctuating density property
This section is devoted to the proof of the following result, which is the second key step
in the proof of the Khintchine–Sullivan Theorem 5.1. It is basically due to Sullivan [Sul3]
in the finite volume, constant curvature case and due to Stratmann and Velani [SV] in the
geometrically finite, constant curvature case. See also [HV] for other applications.

THEOREM 4.1. With the notation from §2, assume that e is a bounded cusp, % is of
divergent type and fπ̃0(t) ( eδ0t . Then there exists a constant c > 0 such that for every
rational line r and every t ≥ 0, one has

1
c
e−δD(r)+2(δ0−δ)t ≤ µ∞(O∞Hr,t ) ≤ ce−δD(r)+2(δ0−δ)t .

Remarks. (1) The assumption that % is of divergent type is sufficient for the application
to Theorem 5.1. However, it can be removed from the statement, by using in the proof of
Proposition 4.2 the general construction of the Patterson–Sullivan measure. Note that if
fπ̃ (t) ( eδt , then % is of divergent type.

(2) The assumption that fπ̃0(t) ( eδ0t cannot be removed, since some control of the
Poincaré series of the parabolic subgroup is needed in order to estimate the behaviour
inside horoballs of the Patterson–Sullivan measures. Note that it implies that %0 is of
divergent type, hence by [DOP, Proposition 2] that δ0 < δ.

Let us consider the map φ : M̃ → R, where φ(y) is the total mass of the Patterson–
Sullivan measure µy . Note that, by the equivariance properties of the Patterson–Sullivan
measures, we have φ(γy) = φ(y) for every y in M̃ and γ in %.

PROPOSITION 4.2. Assume that% is of divergent type and fπ̃0(t) ( eδ0t . For every A ≥ 0,
there exists B > 0 such that for every y in M̃ at distance at most A from the geodesic ray
from x0 to ξ0, we have

1
B

e(2δ0−δ)d(x0,y) ≤ φ(y) ≤ Be(2δ0−δ)d(x0,y).

Proof. Let P = P% be the Poincaré series of %. As % is of divergent type, and as the
constant map with value 1 on M̃ ∪∂M̃ is continuous with compact support, it follows from
the construction of the Patterson–Sullivan measures (see §2) that, for some si → δ+,

φ(y) = lim
i→+∞

P(y, x0, si)

P (x0, x0, si )
.

Choose a representative for every right coset [γ ] in %0\% and denote it by the same
symbol, such that

d(x0, [γ ]x0) = min
α∈%0

d(x0,α[γ ]x0).

By the properties of quasi-geodesics in the Gromov-hyperbolic space M̃, for every A ≥ 0,
there exists a constant c1 > 0, depending only on A, such that if y is at distance at most A

from the geodesic between x0 and ξ0, then

d(y,αy) + d(y, x0) + d(x0, [γ ]x0) − c1 ≤ d(y,α[γ ]x0)

≤ d(y,αy) + d(y, x0) + d(x0, [γ ]x0).
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Let Q(x0, x0, s) = ∑
[γ ]∈%0\% e−sd(x0,[γ ]x0). By uniquely writing each element of % in

the form α[γ ] for α ∈ %0, we get from these inequalities that, for s > δ,

e−sd(y,x0)P%0(y, y, s)Q(x0, x0, s) ≤ P(y, x0, s) ≤ esc1e−sd(y,x0)P%0(y, y, s)Q(x0, x0, s).

Hence, as the series P%0(y, y, s) converges at s = δ,

e−δc1e−δd(y,x0)
P%0(y, y, δ)

P%0(x0, x0, δ)
≤ φ(y) ≤ eδc1e−δd(y,x0)

P%0(y, y, δ)

P%0(x0, x0, δ)
. (i)

Recall that y is at distance at most A from the geodesic from x0 to ξ0. Hence, there
exists a constant c2 depending only on A such that, for every α in %0, if d(y,αy) ≥ c2,
then the piecewise geodesic from x0 to y, then from y to αy, then from αy to αx0 is a
quasi-geodesic. Therefore, there exists a constant c3 ≥ 0 such that, if d(y,αy) ≥ c2, then

d(x0,αx0) ≥ 2d(x0, y) + d(y,αy) − c3 ≥ 2d(x0, y) + c2 − c3.

Note that, by the triangular inequality, d(x0,αx0) ≤ 2d(x0, y) + d(y,αy). In particular, if
d(y,αy) < c2, then d(x0,αx0) < 2d(x0, y) + c2.

Hence,

P%0(y, y, δ) =
∑

α∈%0
d(y,αy)<c2

e−δd(y,αy) +
∑

α∈%0
d(y,αy)≥c2

e−δd(y,αy)

≤ Card{α ∈ %0 : d(x0,αx0) ≤ 2d(y, x0) + c2}
+ e2δd(y,x0)

∑

α∈%0
d(x0,αx0)≥2d(y,x0)+c2−c3

e−δd(x0,αx0).

The last sum is at most∑

n∈N
n≥2d(y,x0)+c2−c3−1

Card{α ∈ %0 : n ≤ d(x0,αx0) ≤ n + 1}e−δn.

Recall that, by assumption, there exists a constant c4 > 0 such that
1
c4

eδ0n ≤ Card{α ∈ %0 : d(x0,αx0) ≤ n} ≤ c4e
δ0n.

Hence

P%0(y, y, δ) ≤ c4e
δ0(2d(y,x0)+c2) + e2δd(y,x0)

∑

n∈N
n≥2d(y,x0)+c2−c3−1

c4e
δ0(n+1)e−δn

≤ c4e
δ0(2d(y,x0)+c2)+ c4e

δ0e2δd(y,x0)
e(δ0−δ)(2d(y,x0)+c2−c3−1)

1 − eδ0−δ = c5e
2δ0d(y,x0),

for some constant c5 > 0 depending only on δ, δ0, c2, c3, c4.
Conversely,

P%0(y, y, δ) ≥
∑

α∈%0
d(y,αy)<c2

e−δd(y,αy)

≥ e−δc2Card{α ∈ %0 : d(x0,αx0) < 2d(y, x0) + c2 − c3}

≥ 1
c4

e−δc2eδ0(2d(y,x0)+c2−c3−1) = c6e
2δ0d(y,x0),

for some constant c6 > 0 depending only on δ, δ0, c2, c3, c4.
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Since P%0(x0, x0, δ) does not depend on y, Proposition 4.2 follows from equation (i)
and the lower and upper bounds on P%0(y, y, δ). !

For every rational line r , let γr be any representative of the double class in %0\(% −
%0)/%0 corresponding to r such that

d(x0, γrx0) = min
α,β∈%0

d(x0,αγrβx0).

PROPOSITION 4.3. With the notation from §2, assume that e is a bounded cusp.
There exists a constant c > 0 such that for every t ≥ 0 and every rational ray r , if
yr,t is the intersection point of γrHt and the geodesic ray from γrx0 to γrξ0, then

1
c
e−δ(t+D(r))φ(yr,t ) ≤ µ∞(O∞Hr,t ) ≤ ce−δ(t+D(r))φ(yr,t ).

Proof. By the definition of µ∞ and O∞ (see §2), we have

µ∞(O∞Hr,t ) = µξ0(Oξ0γrHt ).

We start with a few preliminary remarks. By Lemma 3.5, there is a constant c7 ≥ 0
such that

d(H0, γrH0) ≤ d(x0, γrx0) ≤ d(H0, γrH0) + c7.

Recall from §2 that D(r) = d(H0, γrH0). The point γrx0 lies at a uniformly (in r) bounded
distance from the geodesic ray between x0 to γrξ0, with its orthogonal projection to this
ray lying between x0 and the orthogonal projection to this ray of yr,t , for t big enough.

Hence, there exists a constant c8 ≥ 0 such that for every rational line r and t ≥ 0,

|d(x0, yr,t ) − D(r) − t| ≤ c8.

By the properties of the measure µξ0 (see §2.3), for every compact subset K of ∂M̃ − {ξ0},
there exists a constant c9 > 0 such that, for every ξ in K ,

1
c9

≤ dµξ0

dµx0

(ξ) ≤ c9.

In what follows, K will be any compact subset of ∂M̃ − {ξ0} containing the shadows seen
from ξ0 of every horoball γrH0 as r ranges over the rational lines. Such a K exists, since by
the choice of the representatives [γ ], there exists R > 0 such that Oξ0γrH0 ⊂ Oξ0B(x0, R)

for every rational line r .

Step 1. Let us prove first the upper bound in Proposition 4.3.

By the properties of the Patterson–Sullivan measures (see §2.1), we have, with β the
Buseman function for M̃,

φ(yr,t ) =
∫

∂M̃
dµyr,t (ξ) ≥

∫

Oξ0γrHt

dµyr,t (ξ) =
∫

Oξ0γrHt

e−δβξ (yr,t ,x0) dµx0(ξ).

Recall that x0 (respectively yr,t ) are at uniformly (in r, t) bounded distances from the
intersection point with H0 (respectively γrHt ) of the geodesic line between ξ0 and γrξ0.
Hence, there exists a constant c10 ≥ 0 such that for every ξ in Oξ0γrHt ,

βξ (yr,t , x0) ≤ −d(yr,t , x0) + c10.
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Hence,

φ(yr,t ) ≥ e−δc10eδd(x0,yr,t )

∫

Oξ0γrHt

dµx0(ξ) ≥ e−δc10e−δc8eδ(D(r)+t )µx0(Oξ0γrHt)

≥ 1
c9

e−δ(c10+c8)eδ(D(r)+t )µξ0(Oξ0γrHt).

This proves the first step.

Step 2. Let us now prove the lower bound in Proposition 4.3.

For a contradiction, suppose that there exist a sequence of rational lines (ri )i∈N and
a sequence of non-negative real numbers (ti)i∈N with ti tending to +∞, such that, with
yi = yri,ti and Hi = γriHti ,

1
φ(yi)

eδ(ti+D(ri))µξ0(Oξ0Hi)

tends to zero as i tends to ∞.
Let (Xi, ∗i , di,Gi)i∈N be a sequence of pointed metric spaces with group of isometries,

where Xi = M̃, ∗i = yi, di = d,Gi = %. Since M̃ has pinched negative curvature
−κ2 ≤ K ≤ −1, up to extracting a subsequence, the sequence (Xi, ∗i , di,Gi)i∈N
converges for the equivariant pointed Hausdorff–Gromov convergence (see [Fuk]) to a
proper CAT(−1) and CATop(−κ2) pointed geodesic metric space with group of isometries,
that we denote by (X∞, ∗∞, d∞,G∞). In particular, the metric spaces (∂Xi, d∗i ) converge
for the Hausdorff–Gromov convergence to (∂X∞, d∗∞). We fix a definite convergence
(Xi, ∗i ) →i (X∞, ∗∞) (see [Gro1]), which induces a definite convergence ∂Xi →i ∂X∞.

Let νi = (1/φ(yi))µyi , which is a probability measure on ∂Xi . Up to extracting a
subsequence, the metric measured spaces (∂Xi, d∗i , νi ) converge to the metric measured
space (∂X∞, d∗∞, ν∞); see [Gro2, ch. 3 1

2 ]. We may assume that if fi : ∂Xi → R
are continuous maps converging to a continuous map f : ∂X∞ → R for the definite
convergence ∂Xi → ∂X∞, then ν∞(f ) = limi→∞ νi (fi).

Since the horoball H0 is precisely invariant under % and ti tends to +∞, for i big
enough, the only elements in Gi which move the point ∗i less than any given constant are
parabolic. By taking iterates, there exists 0 < a ≤ b < +∞ and, for every i in N, some
αi in Gi such that a ≤ di(αi∗i , ∗i ) ≤ b. Hence, G∞ is a non-trivial parabolic group
of isometries, fixing the point ξ∞ = limi γri ξ0 of ∂X∞. Since νi is a Patterson–Sullivan
measure of dimension δi = δ for Gi , the measure ν∞ is a Patterson–Sullivan measure of
dimension δ for the isometry group G∞ on X∞. Since G∞ is parabolic and non-trivial,
any closed subset of ∂X∞ not containing ξ∞ may be sent into any neighbourhood of ξ∞
by some element of G∞. By the absolutely continuous property, the measure for ν∞ of
any neighbourhood of ξ∞ is, therefore, non-zero.

Recall that for every ξ in ∂M̃ and every u, v in M̃ , one has, by the triangle inequality,
βξ (u, v) ≥ −d(u, v). By the properties of the Patterson–Sullivan measures, we have

νi (Oξ0Hi) = 1
φ(yi)

µyi (Oξ0Hi) ≤ 1
φ(yi)

eδd(yi,x0)µx0(Oξ0Hi)

≤ eδc8
1

φ(yi)
eδ(ti+D(ri))µx0(Oξ0Hi) ≤ c9e

δc8
1

φ(yi)
eδ(ti+D(ri))µξ0(Oξ0Hi).
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Hence, νi (Oξ0Hi) tends to zero as i tends to +∞. The family of subsets Oξ0Hi converges
for the definite convergence ∂Xi → ∂X∞, up to extracting a subsequence, to a subset
V of ∂X∞ which is a neighbourhood of ξ∞. Indeed, up to extracting a subsequence,
the points ξ0 ∈ ∂Xi converge to ξ0,∞ ∈ ∂X∞; since the horoball Hi is centered at
γri ξ0 and passes through yi , the point ∗∞, which is the limit of yi = ∗i , belongs to the
geodesic between ξ0,∞ and ξ∞, and V is the shadow seen from ξ0,∞ of the horosphere
centered at ξ∞ and passing through ∗∞. Let U be an open neighbourhood of ξ∞ such

that U ⊂ ◦
V . Let f be a continuous map, with support contained in U , bounded by 1,

with value 1 in some neighbourhood of ξ∞. It is easy to construct continuous maps
fi : ∂Xi → R with support in Oξ0Hi , bounded by 1, which converge to f under
∂Xi → ∂X∞. Since νi (fi) ≤ νi (Oξ0Hi), it follows that ν∞(f ) = limi→∞ νi (fi) = 0.
This contradicts the fact that ξ∞ belongs to the support of the measure ν∞. !

Proof of Theorem 4.1. Note that γ−1
r yr,t is the point at distance t from x0 on the geodesic

between x0 and ξ0. Hence, by the invariance of φ and by Proposition 4.2, one has
φ(yr,t ) = φ(γ−1

r yr,t ) ( e(2δ0−δ)t . The result then follows from Proposition 4.3. !

5. The Khintchine–Sullivan theorem in variable curvature
A map f : R+ → R+ is called slowly varying if it is measurable and if there exist constants
B > 0 and A ≥ 1 such that for every x, y in R+, if |x − y| ≤ B, then f (y) ≤ Af (x).
This implies, in particular, that f is locally bounded, hence locally integrable. Note that f

is slowly varying if and only if there is a constant C ≥ 1 such that for every x, y in R+,
if |x − y| ≤ 1, then | log f (x) − log f (y)| ≤ C. In particular, if log f is Lipschitz, then
f is slowly varying. If f is slowly varying, with C as before, then for every ε > 0 and
N ∈ N,

e−CNε
∞∑

n=1

f (Nn)ε ≤
∫ ∞

N
f (t)ε dt ≤ eCNε

∞∑

n=1

f (Nn)ε .

Let d∞ be the Hamenstädt distance on the set of geodesic lines starting from ∞ in M0

(see §2.3).

THEOREM 5.1. With the notation of §2, assume that e is a bounded cusp, fπ̃ (t) ( eδt ,
and fπ̃0(t) ( eδ0t . Let f : R+ → R+ be slowly varying. Let E(f ) be the set of
geodesic lines ξ in M0 starting from ∞ such that there exist infinitely many rational
lines r in M0 with d∞(ξ, r) ≤ f (D(r))e−D(r). Then µ∞(E(f )) = 0 if and only if
the integral

∫ ∞
1 f (t)2(δ−δ0) dt converges and µ∞(cE(f )) = 0 if and only if the integral∫ ∞

1 f (t)2(δ−δ0) dt diverges.

Note that Theorem 1.3 in the introduction then follows from Lemma 3.6. By the remarks
following Theorem 4.1, the assumptions of Theorem 5.1 imply that % is of divergent type
and that δ0 < δ. We start the proof of Theorem 5.1 by some reduction on f .

LEMMA 5.2. For every constant η > 0, to prove this theorem, it is sufficient to prove it
when, furthermore, f (t) ≤ η for every t in R+.
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Proof. Let f : R+ → R+ be slowly varying. For η > 0, let f ′ = inf{η, f }, which is also
slowly varying. Assume that Theorem 5.1 holds for f ′. Let us prove that it holds for f .
Let F be the set of t in R+ such that f (t) > η.

If F is bounded, then E(f ) = E(f ′) since there are only finitely many rational lines
r with D(r) less than a constant. The convergence of the integral of f 2(δ−δ0) does not
depend on the values of f (t) for t less than a constant. Hence, Theorem 5.1 holds for f if
and only if it holds for f ′.

Assume that F is unbounded. Since f is slowly varying, the integral of f 2(δ−δ0)

diverges, as well as the integral of (f ′)2(δ−δ0). Note that E(f ′) ⊂ E(f ). If the theorem
holds for f ′, then µ∞(cE(f ′)) = 0. Hence, µ∞(cE(f )) = 0, so that the theorem holds
for f . !

In particular, we assume from now on that f (t) ≤ 1.

By Theorem 3.4 and Lemma 3.3, there exist c′
1 > 0 and an integer N ≥ 1 such that for

every n in N, the number N ′′
e (n) of rational lines r such that n ≤ D(r) < n + N satisfies

1
c′

1
eδn ≤ N ′′

e (n) ≤ c′
1e
δn.

Define Hr,f = Hr,− logf ◦D(r) with the notation of §2.3. Let An be the set of shadows seen
from ∞ of the Hr,f ’s where r ranges over the rational lines with Nn ≤ D(r) < (n + 1)N .
Define An = ∪An, which is a subset of ∂M0. The proof of Theorem 5.1 is based on the
next two propositions.

PROPOSITION 5.3. The sum
∑∞

n=0 µ∞(An) diverges if and only if the integral∫ ∞
1 f 2(δ−δ0) diverges.

Proof. We start with the following lemma.

LEMMA 5.4. For every A ≥ 0, there exists B ≥ 0 such that the following holds. Let X

be a CAT(−1) space, and ξ0, ξ1, ξ2 be distinct points at infinity of X. Let Hi for i = 1, 2
be horospheres centered at ξi respectively, bounding disjoint open horoballs. Let xi be the
intersection point with Hi of the geodesic line between ξ0 and ξi . For t ≥ 0, let Hi,t be
the horosphere centered at ξi , contained in the horoball bounded by Hi and at distance t

from Hi . If |βξ0(x1, x2)| ≤ A, then the shadows seen from ξ0 of H1,B and H2,B are disjoint.

Proof. By the techniques of approximation by trees (see [GH, p. 33] or [CDP, Ch. 8]), this
lemma follows from the particular case when X is a tree T (though the constant B might
be worse). See Figure 2.

Let B = A/2 + 1. As a preliminary remark, note that if ξ, ξ ′ are distinct ends of the
tree T , if H is a horosphere centered at ξ ′ and x is the intersection point with H of the
geodesic line between ξ and ξ ′, then OξH = Oξx, since any geodesic line starting from ξ

that meets H has to go through x.
With the notation of the claim, we consider two cases. Either x1 belongs to the

geodesic between ξ0 and x2, or it does not. In the second case (assuming that x2 does
not belong to the geodesic ray between x1 and ξ0, otherwise the situation is symmetric to
the first case), the shadows (seen from ξ0) of x1 and of x2 are disjoint, hence the shadows
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FIGURE 2. Separating shadows in trees.

of H1,t , H2,t are disjoint for any t ≥ 0. Assume that the first case holds. In particular,
d(x1, x2) = |βξ0(x1, x2)| ≤ A. (Though we will not need it, note that the shadow of H2 is,
hence, contained in the shadow of H1.) Since H1 and H2 bound disjoint open horoballs,
the point x2 does not lie in the open horoball bounded by H1. Hence, the intersection of
[x1, x2] with the geodesic ray between x1 and ξ1 has length at most A/2. It follows that
the shadows seen from ξ0 of H1,B and H2,B are disjoint. !

We now prove Proposition 5.3. By Lemma 5.4, there exists a constant c′
2 > 0

(depending only on N) such that for every n in N and all distinct rational lines r, r ′ with
Nn ≤ D(r),D(r ′) < N(n + 1), the intersection of O∞Hr,c′

2
and O∞Hr ′,c′

2
is empty.

By the reduction argument on f , we assume from now on that f (t) ≤ e−c′
2 for every t .

In particular, O∞Hr,f is contained in O∞Hr,c′
2
. Hence, the union An = ∪An is a disjoint

union. By Theorem 4.1, we then have

µ∞(An) =
∑

Nn≤D(r)<N(n+1)

µ∞(O∞Hr,f ) (
∑

Nn≤D(r)<N(n+1)

e−δD(r)+2(δ−δ0) logf ◦D(r).

Since f is slowly varying, we have

µ∞(An) ( N ′′
e (Nn)e−δNn+2(δ−δ0) logf (Nn) ( f (Nn)2(δ−δ0).

Since f is slowly varying, the sum
∑

n∈N f (Nn)2(δ−δ0) converges if and only if the integral∫ +∞
1 f (t)2(δ−δ0)dt converges. This proves Proposition 5.3. !

PROPOSITION 5.5. There exists a constant c > 0 such that if n,m are distinct integers,
then

µ∞(An ∩ Am) ≤ cµ∞(An)µ∞(Am).

Proof. We start with the following lemma.

LEMMA 5.6. For every A ≥ 0, there exists a constant c(A) > 0 such that the following
holds. Let X be a CAT(−1) space and ξ0, ξ1, ξ2 be distinct points at infinity of X. Let Hi

for i = 1, 2 be horospheres centered at ξi respectively, bounding disjoint open horoballs.
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FIGURE 3. Overlapping shadows in trees.

Let xi be the intersection point with Hi of the geodesic line between ξ0 and ξi . For t ≥ 0,
let Hi,t be the horosphere centered at ξi , contained in the horoball bounded by Hi and at
distance t from Hi . Assume that βξ0(x1, x2) ≤ A. Let t ≥ c(A) be such that Oξ0H1,t and
Oξ0H2,t meet. Then Oξ0H2 is contained in Oξ0H1,t .

Proof. By the techniques of approximation by trees (see [GH, p. 33] or [CDP, Ch. 8]),
this lemma follows from the particular case when X is a tree T (though the constant c(A)

might be worse). See Figure 3.
In the case of a tree, one can take c(A) = A/2 + 1. Indeed, let t ≥ A/2 + 1 and

for i = 1, 2, let xi,t be the intersection point with Hi,t of the geodesic line from ξ0 to ξi .
Note that xi is contained in the geodesic ray from ξ0 to xi,t for i = 1, 2. Since Oξ0H1,t

and Oξ0H2,t meet, and by the preliminary remark in the proof of Lemma 5.4, there exists
a geodesic line L starting from ξ0 which passes through both x1,t and x2,t .

Suppose that L goes first through x2,t , then through x1,t . Since H1, H2 are disjoint, the
points x2, x2,t , x1, x1,t are in this order on L and

βξ0(x1, x2) = d(x1, x2) ≥ 2t > A,

a contradiction. Hence, L goes first through x1,t , then through x2,t .
Since H1 and H2 are disjoint, the geodesic line L, which enters H1 at x1, has to exit H1

at a point x ′
1 such that x1, x1,t , x

′
1, x2, x2,t are in this order on L. Hence, every geodesic

line starting from ξ0 which meets H2 has to go through H1,t . This says exactly that Oξ0H2

is contained in Oξ0H1,t . !

Let us now prove Proposition 5.5. With the notation of Lemma 5.6, let c′
3 = c(0).

Assume that n < m. Let Rk be the set of rational lines r with Nk ≤ D(r) < N(k + 1).
To simplify notation, let Or,f = O∞Hr,f .

By the reduction argument on f , we may assume that f (t) ≤ e−c′
3 for every t .

By Lemma 5.6, for all rational lines r, r ′ with D(r) < D(r ′), if Or ′,f meets Or,f , then
O∞Hr ′ is contained in Or,f .



820 S. Hersonsky and F. Paulin

Since An = ⋃
r∈Rn

Or,f , we have

µ∞(Am ∩ An) ≤
∑

r∈Rn

µ∞(Am ∩ Or,f )

≤
∑

r∈Rn

∑

r ′∈Rm:Or′,f ∩Or,f /=∅
µ∞(Or ′,f ∩ Or,f )

=
∑

r∈Rn

∑

r ′∈Rm:Or′,f ∩Or,f /=∅
µ∞(Or ′,f ).

For r in Rn, let Ir be the number of r ′ in Rm such that Or ′,f meets Or,f . By
Theorem 4.1 and since f is slowly varying, there exists a constant c′

4 > 0 such that
µ∞(Or ′,f ) ≤ c′

4e
−δNm+2(δ−δ0) logf (Nm) for every r ′ in Rm. Hence,

µ∞(Am ∩ An) ≤ c′
4e

−δNm+2(δ−δ0) log f (Nm)
∑

r∈Rn

Ir .

The cardinal of Rn, which is N ′′
e (Nn), is at most c′

1e
δNn. Let us give an upper bound

on Ir . By the definition of c′
2 in the proof of Proposition 5.3, for every k in N, the shadows

O∞Hρ,c′
2

for ρ ∈ Rk are pairwise disjoint. By Theorem 4.1 and since f is locally bounded,

there exists a constant c′
5 > 0 such that µ∞(O∞Hr ′,c′

2
) ≥ c′

5e
−δNm for every r ′ in Rm.

Hence,
c′

5e
−δNmIr ≤

∑

r ′∈Rm:Or′ ,f ∩Or,f /=∅
µ∞(O∞Hr ′,c′

2
) ≤ µ∞(Or,f ),

so that Ir ≤ (1/c′
5)e

δNmµ∞(Or,f ). By Theorem 4.1, and since f is slowly varying, there
exists a constant c′

6 > 0 such that

Ir ≤ c′
6e
δNme−δNn+2(δ−δ0) logf (Nn).

Hence,

µ∞(Am ∩ An) ≤ (c′
4e

−δNm+2(δ−δ0) logf (Nm))(c′
1e
δNn)(c′

6e
δNme−δNn+2(δ−δ0) log f (Nn))

= c′
1c

′
4c

′
6f (Nn)2(δ−δ0)f (Nm)2(δ−δ0).

But we have seen in the proof of Proposition 5.3 that µ∞(Ak) ( f (Nk)2(δ−δ0). Hence,
Proposition 5.5 follows. !

Proof of Theorem 5.1. For every rational line r and every geodesic line ξ starting from ∞
in M0, let d ′

∞(ξ, r) be the lower bound of the e−t for t > 0 such that ξ meets Hr,t . That is
d ′
∞(ξ, r) ≤ e−t if and only if ξ meets Hr,t .

According to [HP2], there is a constant c′
7 > 0 such that

1
c′

7
d∞(ξ, r) ≤ e−D(r)d ′

∞(ξ, r) ≤ c′
7d∞(ξ, r).

In particular, if the endpoint of ξ belongs to O∞Hr,f , then d ′
∞(ξ, r) ≤ e−(− logf ◦D(r)),

hence d∞(ξ, r) ≤ c′
7f ◦ D(r)e−D(r). Conversely, if d∞(ξ, r) ≤ (1/c′

7)f ◦ D(r)e−D(r),
then d ′

∞(ξ, r) ≤ e−(− logf ◦D(r)); hence, the endpoint of ξ belongs to O∞Hr,f .
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Define A∞ = ⋂
n∈N

⋃
k≥n Ak, which is the set of points in ∂M0 belonging to infinitely

many An’s. Note that A∞ is contained in the subset %0\(*%− {ξ0}), since the orbit under
% of the parabolic point ξ0 is dense in the limit set of %.

By these arguments, if the endpoint of ξ belongs to A∞, then there are infinitely many
rational lines r such that d∞(ξ, r) ≤ c′

7f ◦ D(r)e−D(r). And if there are infinitely many
rational lines r such that d∞(ξ, r) ≤ (1/c′

7)f ◦D(r)e−D(r), then ξ belongs to A∞. With the
notation in the statement of Theorem 5.1, we then have

E

(
1
c′

7
f

)
⊂ A∞ ⊂ E(c′

7f ).

Note that the convergence or divergence of the integral
∫ ∞

1 f 2(δ−δ0) is unchanged if
one replaces f by λf for any λ > 0. Hence, to prove that µ∞(E(f )) > 0 if and only if∫ ∞

1 f 2(δ−δ0) diverges, it is sufficient to prove that µ∞(A∞) > 0 if and only if
∫ ∞

1 f 2(δ−δ0)

diverges.

We use the following result whose proof can be found, for instance, in [Spr].

THEOREM 5.7. Let (Y, ν) be a probability space. Let (Bn)n∈N be a sequence of
measurable subsets of Y such that there exists a constant c > 0 with ν(Bn ∩ Bm) ≤
cν(Bn)ν(Bm) for all distinct integers n,m. Let B∞ = ⋂

n∈N
⋃

k≥n Bk . Then ν(B∞) > 0
if and only if

∑∞
n=0 ν(Bn) diverges.

We now use Propositions 5.5 and Proposition 5.3 and apply the previous result with
Y = ∂M0, ν = µ∞, Bn = An, to obtain that µ∞(E(f )) > 0 if and only if

∫ ∞
1 f 2(δ−δ0)

diverges. This is the first conclusion of Theorem 5.1.
Assume that

∫ ∞
1 f 2(δ−δ0) diverges. Let us prove that µ∞(cE(f )) = 0, which proves

the second conclusion of Theorem 5.1.
Let g : [0,+∞[ → ]0,+∞[ be a map decreasing to 0 such that

∫ ∞
1 (gf )2(δ−δ0)

diverges. Let E′(f ) be the set of geodesic lines ξ in M0 starting from ∞ such that there
exist c > 0 and infinitely many rational lines r in M0 with d∞(ξ, r) ≤ cf (D(r))e−D(r).
Since E(gf ) ⊂ E′(gf ), the first conclusion of Theorem 5.1 implies that µ∞(E′(gf )) > 0.
It is clear that the union of {ξ0} and of the pre-image in ∂M̃ of E′(gf ) ⊂ ∂M0 is invariant
under %.

Since % is of divergent type, the action of % on ∂M̃ for the Patterson–Sullivan
measure is ergodic, see, for instance, [Rob]. By [DOP], since ξ0 is a bounded parabolic
point and % is non-elementary of divergent type, the measure µ∞ has no atom at ξ0.
By ergodicity, µ∞(cE′(gf )) = 0. But E′(gf ) ⊂ E(f ) since g is decreasing to 0. Hence
µ∞(cE(f )) = 0. !

6. The logarithm law for the geodesic flow in variable curvature
Define a map +e : M → R that describes the penetration distance into the maximal
Margulis neighbourhood Ve of the cusp e, by +e(x) = −1 if x does not belong to Ve, and
+e(x) = d(x, ∂Ve) otherwise.
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COROLLARY 6.1. With the notation of §2, assume that e is a bounded cusp, fπ̃ (t) ( eδt ,
and fπ̃0(t) ( eδ0t . For every y in M and almost every v in T 1

y (M) (for the Patterson–
Sullivan measure), we have

lim sup
t→+∞

+e(γv(t))

log t
= 1

2(δ − δ0)
.

Proof. We will apply Theorem 5.1 to the functions fκ (t) = t−κ . Note that the integral∫ ∞
1 (fκ )

2(δ−δ0) diverges if and only if κ ≤ 1/2(δ − δ0).
In what follows, the variable ξ denotes a geodesic line starting from ∞ in M0, with

endpoint in the (full measure for µ∞) image in ∂M0 of*%− {ξ0}. Take as the origin ξ(0)

on ξ its intersection with H∞.
By the definition of the Hamenstädt distance, there exists a constant c′′

1 ≥ 0 such that,
for every ξ and every rational line r in M0 such that ξ enters HBr , if ξr is the tangency
point to some Hr,t for some t = tξ,r (i.e. ξr is the deepest penetration point of ξ in HBr ),
then

e−D(r)−t−c′′
1 ≤ d∞(ξ, r) ≤ e−D(r)−t+c′′

1 . (3)

With this notation, there also exists a constant c′′
2 such that the length 4ξ (r) of the

subsegment between the origin of ξ and ξr satisfies

D(r) + tξ,r − c′′
2 ≤ 4ξ (r) ≤ D(r) + tξ,r + c′′

2 .

If π0 : M0 → M is the canonical covering map, by the properties of the maximal Margulis
neighbourhood, and since e is bounded, there exists a constant c′′

3 ≥ 0 such that

tξ,r − c′′
3 ≤ +e(π0(ξr )) ≤ tξ,r + c′′

3 .

Let κn = 1/2(δ − δ0) + 1/n. By the first part of Theorem 5.1, for almost every ξ ,
except for finitely many rational lines r , d∞(ξ, r) ≥ fκn (D(r))e−D(r). Hence, by the
formula (3), for almost every ξ , we have tξ,r ≤ κn log D(r) + c′′

1 for every (except finitely
many) rational line r such that ξ enters HBr . In particular, for almost every ξ for every real
constant c, as r goes to infinity in the discrete set of rational lines with ξ meeting HBr , we
have log D(r) ∼ log(D(r) + tξ,r + c). Therefore, for almost every ξ ,

lim sup
+e(π0(ξr ))

log 4ξ (r)
≤ κn,

where the upper bound is taken as r goes to infinity in the discrete set of rational lines with
ξ meeting HBr .

Similarly, by the second part of Theorem 5.1 using the function fκ with κ = 1/2(δ−δ0),
for almost every ξ ,

lim sup
+e(π0(ξr ))

log 4ξ (r)
≥ κ,

where the upper bound is taken as before. Removing countably many sets of measure zero,
we get that, for almost every ξ ,

lim sup
+e(π0(ξr ))

log 4ξ (r)
= κ. (†)
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Now let y be a point in M , and choose a lift ỹ of y in M̃. Let v *→ ṽ be the map
T 1

y M → T 1
ỹ M̃ induced by the covering map π̃ . Note that ξ0 is not an atom for the

Patterson–Sullivan measures (see [DOP]).
The complement in T 1

y M of the vector v0 such that ṽ0 points towards ξ0, which has
full Patterson–Sullivan measure, can be covered by countably many open subsets U such
that the following holds: there exists a relatively compact small open subset Ũ of geodesic
lines in M̃ starting from ξ0, with Ũ embedding in M0 under π̃0, such that U is the subset
of vectors v in T 1

y M such that ṽ points towards the endpoint of some element ζ̃ = ζ̃ (v)

in Ũ .
Note that γṽ and ζ̃ become arbitrarily close towards their common point at infinity, so

that the geodesic ray and line γv and π̃ (̃ζ ) have the same asymptotic behaviour inside the
maximal Margulis neighbourhood Ve of e.

Let ζ = ζ(v) be the image of ζ̃ in M0. Since µỹ and µξ0 are absolutely continuous,
the map v *→ ζ (which is a homeomorphism onto its image) preserves the sets of measure
zero. For every v in U , if t ≥ 0 is such that γv(t) is the maximal penetration point in Ve

of some connected component of int(Ve) ∩ γv(R), then there is a constant c′′
4 ≥ 0 and a

rational line r such that
|+e(π0(ζr )) −+e(γv(t))| ≤ c′′

4 .

Note that there is a constant c′′
5 ≥ 0 such that

|t − 4ζ (r)| ≤ |dM̃(ỹ, γṽ (t)) − d(γṽ(t), ζ̃ (0))| + c′′
5 ≤ dM̃(ỹ, ζ̃ (0)) + c′′

5 ,

which is uniformly bounded.
Hence Corollary 6.1 follows from formula (†). !

COROLLARY 6.2. With the notation of §2, assume that M is geometrically finite, and that
fπ̃0(t) ( eδ0t and similarly for every cusp. Assume that δ0 is the biggest critical exponent
of the parabolic subgroups of the cusps of M . For every y in M and almost every v in
T 1

y M (for the Patterson–Sullivan measure),

lim sup
t→+∞

dM(y, γv(t))

log t
= 1

2(δ − δ0)
.

Theorem 1.4 in the introduction immediately follows from this corollary.

Proof. Note that fπ̃ (t) ( eδt by Lemma 3.6. Since M is geometrically finite, it has only
finitely many cusps and π̃(C*%) is the union of a compact subset and the (intersections
with π̃(C*%) of the) finitely many maximal Margulis neighbourhoods of the cusps.
The result then follows from Corollary 6.1, by considering the excursions of the geodesics
in the different cusps. !
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