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Abstract. Our goal is to provide a novel method of representing 2D shapes, where each
shape will be assigned a unique fingerprint - a computable approximation to the conformal
map of the given shape to a canonical shape in 2D or 3D space (see page 22 for a few
examples). In this paper, we make the first significant step in this program where we address
the case of simply, and doubly-connected planar domains. We prove uniform convergence
of our approximation scheme to the appropriate conformal mapping.

To this end, we affirm a conjecture raised by Ken Stephenson in the 90’s which predicts
that the Riemann mapping can be approximated by a sequence of electrical networks. In
fact, we first treat a more general case. Consider a planar annulus, i.e., a bounded, 2-
connected, Jordan domain, endowed with a sequence of triangulations exhausting it. We
construct a corresponding sequence of maps which converge uniformly on compact subsets
of the domain, to a conformal homeomorphism onto the interior of a Euclidean annulus
bounded by two concentric circles. The resolution of Stephenson’s Conjecture then follows
by a limiting argument.

With more complex topology of the given shape, i.e, when it has higher genus, we will use
methods invented by Arabnia [4] and Wani-Arabnia [38]. First, to divide the domain into
subdomains and thereafter to make the scheme presented in this paper suitable for parallel
processing. We will then be able to compare our results for those appearing, for instance,
in the work of Arabnia-Oliver [5] that provides algorithms for the translation and scaling of
complicated digitalized images.

0. Introduction

0.1. Riemann’s Mapping Theorem and Thurston’s disk packing scheme. The Rie-
mann Mapping Theorem asserts that any simply connected planar domain which is not the
whole plane, can be mapped bi-holomorphically onto the open unit disk. That is, the do-
mains are conformally equivalent. After a suitable normalization, this mapping is called the
Riemann mapping and it is desirable to have a concrete approximation of it. In [48], Rodin
and Sullivan proved Thurston’s celebrated conjecture [58] asserting that a scheme based
on the Koebe-Andreev-Thurston disk packing theorem (cf. [1, 2, 41, 59]) converges to the
Riemann mapping.

In order to formulate Thurston’s conjecture, which inspired Stephenson’s conjecture, we
need to recall a few definitions. Let P be a disk packing in the complex plane C. An interstice
is a connected component of the complement of P , and one whose closure intersects only
three disks in P is called a triangular interstice. We will let supp(P ) denote the union of the
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disks in P and all its bounded interstices, and we will assume that it is simply-connected.
The disks of P that intersect the boundary of its support are called boundary disks. Two
finite disk packings, P and P̃ in C, will be called isomorphic, if there exists an orientation
preserving homeomorphism φ : supp(P ) → supp(P̃ ) such that φ(P ) = P̃ . It is clear that

such an isomorphism induces a bijection between the disks of P and the disks of P̃ .

Let Ω ( C be a bounded, simply connected domain, and let p0 be an interior point in it.
For each positive integer n, let P n be a disk packing in Ω in which all bounded interstices
are triangular. Assume that there is a sequence of positive numbers δn which converges to
zero, such that: i) the radius of every disk in P n is smaller than δn, and ii) every boundary
disk in P n is at most the distance of δn from ∂Ω. Finally, let P n

0 be a selected disk in P n

which is closest to p0 or contains it.

The Disk Packing Theorem (Koebe-Andreev-Thurston) implies that there exists an iso-
morphic packing P̃ n in the closed unit disk D̄ with all of its boundary disks tangent to
the unit circle S1. Furthermore, if the given graph is isomorphic to the 1-skeleton of a
triangulation of the Riemann sphere, then the packing is unique up to applying a Möbius
transformation. Let

(0.1) fn : supp(P n) → supp(P̃ n)

be an isomorphism of P n and P̃ n. Furthermore, normalize P̃ n by a sequence of Möbius
transformations preserving U so that P̃ n

0 , the disk corresponding to P n
0 , is centered at the

origin. Thurston conjectured that if the packings P n are chosen to be sub packings of scaled
copies of the infinite hexagonal disk packing of C, then the sequence of piecewise affine maps
(i.e., simplicial) fn converges uniformly on compact subsets of Ω to the Riemann mapping
from Ω to D.

Rodin and Sullivan [48] proved Thurston’s Conjecture by first showing that the maps
fn are K-quasiconformal, for some fixed K. Hence, there exists a subsequence which will
converge to a limit function f which must also be K-quasiconformal. Rodin and Sullivan
further showed that f must be 1-quasiconformal, and therefore, f is in fact conformal. He
and Schramm [31, Theorem 1.1] developed profound techniques which avoid the machinery
of quasiconformal mapping that is heavily used in Rodin-Sullivan’s proof. Up to date, their
theorem and advances [32] in the simply connected case, is the most advanced. See also their
related work on Koebe’s Conjecture in [33].

Chow and Luo [15] discovered applications of disk packing to the study of discrete Ricci
flow on surfaces; see also the work of Glickenstein [23] for related study. There are also
applications of circle packings to algorithmic computer vision and computational conformal
geometry due to Gu, Luo and Yau, Gu, Zeng, Zhang, Luo and Yau, and Sass, Stephenson and
Brock (cf. [27, 28] [62] and [49] as examples and further advances). More recently, taking a
complementary approach to the one in this paper, Gu, Luo, Sun, and Wu [29] have developed
powerful tools establishing several important results concerning discrete uniformization of
polyhedral surfaces.

0.2. Electrical networks and Stephenson’s conjecture. In his attempts to prove uni-
formization, Riemann suggested considering a planar annulus as made of a uniform conduct-
ing metal plate. When one applies voltage to the plate, keeping one boundary component
at a fixed voltage k and the other at the voltage 0, electrical current will flow through the
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annulus. The equipotential sets form a family of disjoint, simple closed curves foliating the
annulus and separating the boundary curves. The current flow sets consist of simple disjoint
arcs connecting the boundary components, and they also foliate the annulus. Together, the
two families provide curved “rectangular” coordinates on the annulus that can be used to
turn it into a right circular cylinder, or into a (conformally equivalent) circular concentric
annulus.

An electrical circuit or network is a collection of nodes and connecting wires. For in-
stance, a disk packing of a fixed planar domain induces such a network where each center
of a disk corresponds to a node and a wire connects each pair of nodes corresponding to
tangent boundaries. It is therefore reasonable to conjecture that if the domain is made of
thin conducting material then its electrical behavior can be approximated by a sequence of
networks that approximates its shape.

Stephenson’s Conjecture from the 90’s (see page 63 and Definition 6.5.1 in [56]) is con-
cerned with constructing such an approximation:

Conjecture 0.2 (Stephenson [56]). Given a sequence of networks approximating a simply-
connected, bounded, Jordan domain arising, for instance, from a sequence of disk packing,
choose conductance constants along the edges (for each network) according to Equation (1.2).
Then the sequence of discrete potentials and currents will converge to the ones induced by
the Riemann mapping.

We have phrased this conjecture in the more recent formulation of (1.5) (see Section 1
for the details). In fact, a similar conjecture can be formulated for any domain that can
be approximated (in a sense that we will make precise in Section 3.4) by a sequence of
quasi-uniform triangulations (see Definition A.6) that exhaust the given domain.

In Theorem 3.13, we will formalize and affirm Stephenson’s conjecture in the case of an
annulus by methods that are different from the ones used in his paper or those mentioned
in Section 0.1. In particular, we will show that there exists a large class of networks for
which the conjecture holds. We will also affirm this conjecture in its original form, i.e., for
simply-connected domains in the complex plane.

0.3. The themes of this paper. There is a classical and elaborate theory of conformal
uniformization for domains in the Riemann sphere that are bounded by Jordan curves. Let
Ω be such a domain which is also finitely connected. Koebe proved [40] that Ω is conformally
homeomorphic to some domain Ω∗ whose boundary components are circles. Such a domain
is called a circle domain. Furthermore, Ω∗ is unique up to Möbius transformations.

Discrete uniformization schemes have traditionally been the first step in constructing a
sequence of approximations to a conformal map from the given domain (more on this in
Section 0.1). There is much interest and effort by, for example, Cannon, Floyd and Parry,
to provide sufficient combinatorial conditions under which, discrete schemes based on the
discrete extremal lengthmethod, will converge to a conformal map in the cases of triangulated
annulus or a quadrilateral; see for instance [10] for the starting point and [11] for their most
recent work. However, Schramm showed [51, page 117] that if one attempts to use the
combinatorics of the hexagonal lattice alone, square tilings (as constructed by Schramm’s
method) cannot be used as discrete approximations for the Riemann mapping.
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In a different vein, of much current and recent interest is the universality of the critical
Ising and other lattice models where discrete complex analysis on graphs played a crucial
role (see for instance [12, 20]).

In this paper, stemming from our work in [34, 35, 36, 30], we will prove that a certain
discrete scheme yields convergence of the mappings described below to a canonical conformal
mapping from a given polygonal, planar, annulus, onto the interior of a Euclidean annulus
bounded by two concentric circles.

Specifically, the underlying idea of this paper is rooted in a foundational feature of two
dimensional conformal maps. If f : D → C is a conformal map, then the Cauchy-Riemann
equations imply that ℜ(f) and ℑ(f) are harmonic functions, and that ℑ(f) is the harmonic
conjugate of ℜ(f). For instance, when (r, θ) are polar coordinates in the plane, we have that
u(r, θ) = log r and v(r, θ) = θ (when θ is single valued) are harmonic functions, and v(r, θ)
is the harmonic conjugate of u(r, θ). Indeed, in this paper, we will work with the pair (g, ḡ∗)
which are combinatorial functions defined on the triangulation and its Voronoi dual (to be
explained later).

In Theorem 3.13, we will show that under certain geometric restrictions on the sequence of
triangulations, where each triangulation is endowed with the conductance constants defined
according to Equation (1.2), the sequence of combinatorially defined functions

φn = exp
( 2π

period(ḡ∗n)

(

gn + iḡ∗n)
)

,

will converge uniformly on compact subsets of a given annulus, to the conformal uniformizing
map of the annulus whose form is well understood (see for instance [17, Section 7] or [60,
Theorem 4.3]).

To this end, we will employ L∞ convergence results from the theory of the finite element
method, techniques from discrete potential theory, and classical results form the theory of
functions of one complex variable concerning compactness of sequences of holomorphic map-
pings, and partial differential equations. In order to put some of the needed advances over
previous work in context, let us briefly recall an inspiring work by Dubejko [19]. Let w de-
note the solution of the Dirichlet problem ∆w = f for x ∈ Ω, and w = φ for x ∈ ∂Ω, where
Ω is a simply-connected, bounded, Jordan domain with C2 boundary, where f 6= 0 ∈ L2(Ω)
and φ ∈ C0(Ω). By applying techniques from the finite volume method, Dubejko proved
that w can be approximated (in various norms) by a sequence of solutions of discrete Dirich-
let boundary value problems. These solutions belong to a certain Sobolev space and are
constructed via a sequence of triangulations (with special properties) that gets finer while
exhausting Ω from the inside. Dubejko’s work, which utilized Stephenson’s conductance
constants in the setting of the finite volume method (see [21]), is not sufficient for construct-
ing approximations of conformal maps from Jordan domains. In fact, already in the simply
connected case his techniques are not sufficient. This is due to the following reasons: His
methods can be applied only under the assumption that the boundary of Ω is C2; second,
Dubejko did not address the problem of defining a combinatorial analogue of the harmonic
conjugate; finally, Dubejko applied the Riemann’s mapping theorem in his proof.

In order to overcome some of these issues, we will employ a foundational result from the
theory of the finite element method [50, Theorem 4.1]. This result will provide the L∞

convergence of the (normalized) gn’s, which are different from the ones used by Dubejko,
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to the real part of the uniformizing map of an annulus with continuous boundary. Once
this convergence result is applied, one novel part of this work is introducing a combinatorial
analouge of the harmonic conjugate function and proving its convergence to its analytical
counterpart.

0.4. Organization of the paper. In Section 1, we start by recalling the definition of the
conductance constants suggested by Stephenson in his conjecture (Conjecture 0.2). We then
express these in the way they are going to be utilized in Theorem 3.13, the main theorem of
this paper, which proves that a certain discrete scheme converges to a uniformizing map of
a planar annulus.

In Section 2, we present three novel definitions. First, we define the class of discrete
asymptotic harmonic functions. Intuitively, a function in this class is almost harmonic on
a scale determined by the mesh of the triangulation. Since our discrete approximations of
ℜ(f), the smooth uniformizing map of an annulus, is not discrete harmonic, introducing this
class of functions is essential to the approximation process described in the main theorem
of this paper. Second, the flux following path is contained in the one skeleton of a given
triangulation; it is used to determine the amount of discrete flux of a function which “crosses”
a path in the one skeleton of the Voronoi cells of the given triangulation. Finally, if g is a
discrete harmonic or a discrete asymptotic harmonic function, by summing the discrete flux
along such paths, we are able to define a conjugate function ḡ∗ of g and thereafter to prove
its convergence.

Section 3 is devoted to the approximation of a uniformizing map of a planar annuli with
a continuous Jordan boundary. We first study the case of a polygonal annulus. In Theo-
rem 3.13, we prove the uniform convergence of our proposed discrete scheme on compact
subsets of the interior of the given annulus, to a conformal homeomorphism. We are then
concerned with the approximation of the uniformization of an annulus with continuous Jor-
dan boundary. Corollary 3.43 demonstrates that Theorem 3.13 coupled with a generalization
of a compactness theorem due to Koebe and a diagonalization process, allow the weakening
of the boundary regularity assumption of Theorem 3.13 from polygonal to continuous.

Section 4 is devoted to the proof of Theorem 4.2, where we provide an approximation
of the uniformization of a bounded, simply-connected Jordan domain, the setting in which
Stephenson’s conjecture (Conjecture 0.2) was first stated. The idea is to present the punc-
tured domain as an increasing sequence of annuli. Thus, one can apply Theorem 3.13 to each
annulus in the sequence. The existence of a converging subsequence of the maps obtained
in each step to a bounded, conformal, univalent map is then proved (following the same
rationale as in Corollary 3.43), and we can therefore restrict attention to the case that the
boundary of the domain is polygonal. Finally, the Riemann’s removable singularity theorem
is used to show that the sequence of the above conformal maps is bounded, hence, can be
extended over the puncture.

With the aim of making this paper self-contained, it contains an Appendix. In Appen-
dix A.1 and in Appendix 3.2, we collect a few important notations, definitions and theorems
from the finite element method that are applied in this paper. The reader who is familiar
with this method, can skip these sections. However, Theorem 3.4, which is quoted from
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[50, Theorem 4.1] is essential for the L∞ convergence analysis results of this paper. In Ap-
pendix A.2, we describe the relation between Stephenson’s conductance constants and the
theory of the finite volume element method.

Acknowledgement. We are indebted to Gilles Courtois for carefully reading this paper, a great
deal of help in clarifying several proofs and in making the presentation lucid. Ridgway Scott,
Thierry Gallouet, and Al Schwatz are heartily thanked for graciously sharing with the author their
insights regarding the subtle analysis involved in numerical methods for convex and non-convex
planar domains. We are grateful to Benson Farb, Rich Schwartz, Ted Shifrin, and Robert Varley
for their patient listening, and valuable discussions during the preparation of this paper. Our
gratitude to Eric Perkerson for essential help in implementing the algorithm in Theorem 3.13 (see
for instance the illustrations on page 22).

1. Electrical networks induced by disk packings and Stephenson’s conductances

Let us recall a few definitions and some notation from [18, 19, 56] and [57] in order to express the
conductance constants suggested by Stephenson. Let P be a euclidean disk packing of a domain Ω
for a complex K, i.e., the contact graph of P is isomorphic to K. For an interior edge (u, v) ∈ K,
consider the tangent circles, cv and cu, as depicted in the figure below. Let cx, cy be their common
neighboring circles.

Ψu

cu

cx

cy

wy

wx

zv

cv

zu

Figure 1.1. Constructing an edge conductance in a circle packing.

The radical center, wx, of the triple {cv , cu, cx} of circles will denote the center of the circle that
is orthogonal to cv, cu and cx and let wy be the radical center of the triple {cv, cu, cy}. Let zu, zv
be the centers of cu, cv , respectively. Finally, for a vertex v, let Rv denote the radius of the circle
cv. The sum of the angles at v ∈ P is obtained by adding the angles formed by the edges of the
contact graph of P emanating from zv.

Stephenson’s conductance of an edge is defined by (see also Definition 2.16 and Equation (A.21)):

(1.2) c(e) = c(u, v) =
|wx −wy|

|zu − zv|
.

It is illuminating to give a probabilistic interpretation to this quantity. Stephenson’s main idea
was to chase angle changes at the centers of the circles, as radii change while maintaining (new)
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disk packing. Given a euclidean circle packing, the effect of a small increase in the radius of one
of the circles, say Rv, is that the sum of the angles at v decreases, while the angle sums at the
neighboring vertices {v1, v2, . . . , vk} increase. Some of the angle “distributed” by v arrives at vj
and must be passed along in order to keep a packing at vj. Hence, Rvj has to be adjusted and we
need to keep track of the angle changes of its neighbors, and so forth.

In Euclidean geometry, the angles of any triangle add up to π, so angles in this process will
never get lost. In other words, the total angle leaving one vertex must be divided into portions and
then distributed as angles arriving to its neighbors. This movement can be expressed as a Markov
process, where the transition probability from v to vj , is the proportion of a decrease in the sum of
the angles at v that becomes an increase in the sum of the angles at vj . In this Markov process,
the random walkers are the quantities of angles moving from one vertex to another. Thus, for a

specific neighbor u = vj , the amount of angle arriving at ψu is given by dψu

dRv
. It turns out that the

transition probability from v to u as described above is given by

(1.3) ρ̄(v, u) =

dψu

dRv

∑k
j=1

dψvj

dRvj

.

Also, for a vertex v ∈ K, we let

(1.4) ρ(v, u) =
c(v, u)

∑

u∼v c(v, u)
.

It is remarkable that in 2005 (see [54, Section 18.5]) Stephenson showed that equality holds
between these two Markov transitions, that is,

(1.5) ρ(v, u) = ρ̄(v, u), u ∼ v.

2. Smooth harmonic conjugate functions and their combinatorial counterparts.

This section entails several key definitions and constructions. In the first subsection, we collect a
few classical PDE existence results that go back to Poincaré and Lesbegue. In the second subsection,
we will assume that A is a fixed, planar, polygonal annulus endowed with a triangulation T . We
will write ∂A = E1 ∪ E2 where E1 denotes the outer boundary component.

After recalling the definitions of the combinatorial laplacian and the normal derivative, we will
turn to define the class of discrete, asymptotically harmonic functions (this class includes discrete
harmonic functions). The main goal of this section is to define a conjugate function to any function
in this class (see Definition 2.20). One interesting feature of the conjugate function is that, in
general, and unlike the smooth category, it is not harmonic.

2.1. Strong solutions of the Laplace equation and smooth harmonic conjugate func-
tions. The solutions of the Laplace equation, harmonic functions, have a foundational role in
various areas of mathematics. In this paper, we will apply known connections between harmonic
functions and conformal maps defined on Ω. Furthermore, we will later on use an approximation
scheme of the solution in our construction of a combinatorial analogue of the harmonic conjugate
function. Let Ω be a bounded, planar domain and assume that u ∈ C2(Ω) ∩ C(Ω̄) is the strong
solution of the Dirichlet boundary value problem for the Laplace equation with non-homogeneous
boundary conditions

(2.1)

{

△u = 0 in Ω,

u = h on ∂Ω,

where h ∈ C(∂Ω), or more generally is the trace of h̃ ∈ H1(Ω).
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The study of the existence of strong solutions of Dirichlet boundary value type problems has an
impressive history. Poincaré introduced the notion of barriers, and their importance was further
recognized later by Lebesgue. A function w ∈ C0(Ω) is called super-harmonic in Ω, if for any closed
region Ω′ ⊂ Ω, and any harmonic function u in the interior of Ω′, whenever the inequality

(2.2) w ≥ u

holds on the boundary of Ω′, it also holds in the interior of Ω′.

Let ξ be a point in ∂Ω, then a C0(Ω̄) function w = wξ is called a barrier at ξ relative to Ω. If w
is super-harmonic in Ω, it approaches 0 at ξ, and outside of any sphere about ξ, it has a positive
lower bound in Ω. Two profound consequences of the existence of a barrier are the following.

Theorem 2.3 ([39, Theorem III, page 327]). A necessary and sufficient condition that the Dirichlet
problem for Ω is solvable for arbitrary assigned continuous boundary values, is that a barrier for Ω
exists at every point in ∂Ω.

It is therefore important to understand which domains in the Euclidean plane satisfy the hy-
pothesis of Theorem 2.3. Indeed, general sufficient conditions can be described in terms of local
properties of the boundary (see for instance [60, Proposition 5.13]).

Theorem 2.4 (Lebesgue). The Dirichlet boundary value problem (2.1) is solvable for arbitrary
assigned continuous boundary values if every component of the complement of the domain consists
of more than a single point.

For the applications of this paper, the following corollary is essential.

Corollary 2.5. Let Ω be a Jordan domain, then the Dirichlet boundary problem (2.1) is solvable
in Ω for arbitrary continuous boundary values.

The (strong) maximum principle (see for instance [13]) implies that a strong solution is unique.
Therefore, in the special case studied in the this paper, where Ω = A is a planar annulus (with
polygonal or even continuous boundary), we make the following:

Definition 2.6. We call u ∈ C2(A) ∩ C0(Ā) the strong solution of the Dirichlet boundary value
problem of the Laplace equation, if

(2.7)

{

△u = 0 in A,

u = 1 on E1, and u = 0 on E2.

We end this subsection by recalling the following definition which is valid for any harmonic
function.

Definition 2.8 (A smooth harmonic conjugate (see for instance [45, Chapter 1.9])). Let (x0, y0)
be a point in A, and let (x, y) in A be an arbitrary point. Let γ be a simple, piecewise-smooth curve
joining (x0, y0) to (x, y) in A. Let β be any simple, closed, counter-clockwise oriented, piecewise
smooth curve in A whose winding number is equal to 1. Furthermore, let s denote the arc-length
parameter of these curves, and let n̂ denote a unit normal pointing to the right of the tangents to
these curves.

A (multivalued) harmonic conjugate of u is defined by

(2.9) u∗(x, y) = u∗(x0, y0) +

∫

γ

∂u

∂n̂
ds,

where u∗(x0, y0) is some arbitrary fixed real constant, and the period of u∗ is defined by

(2.10) period(u∗) =

∫

β

∂u

∂n̂
ds.
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Remark 2.11. It is well known that a smooth harmonic conjugate u∗ is defined up to a constant,
i.e., an assigned value at a point in the annulus. Furthermore, the function values at any point
differ by integral multiples of its period, i.e., u∗ is multivalued.

2.2. Discrete harmonic and asymptotically harmonic functions, and their conjugates.
We now turn to defining a combinatorial function analogous to u∗. We will start with some
notation and definitions from the subject of discrete harmonic analysis that will be used throughout
the rest of this paper (see for instance [7] or [36, Section 1.1]). Let Γ = (V,E, c) be a planar
finite network; that is, a planar, simple, and finite connected graph with vertex set V and edge
set E, where each edge (x, y) ∈ E is assigned a conductance c(x, y) = c(y, x) > 0. Let P(V )
denote the set of non-negative functions on V . Given F ⊂ V , we denote by F c its complement
in V . Set P(F ) = {u ∈ P(V ) : S(u) ⊂ F}, where S(u) = {x ∈ V : u(x) 6= 0}. The set
δF = {x ∈ F c : (x, y) ∈ E for some y ∈ F} is called the vertex boundary of F . Let F̄ = F ∪δF , and
let Ē = {(x, y) ∈ E : x ∈ F}. Let Γ̄(F ) = (F̄ , Ē, c̄) be the network such that c̄ is the restriction
of c to Ē. We write x ∼ y if (x, y) ∈ Ē, y is called a neighbor of x, and we let Nx denote the
cardinality of the set of neighbors of x. The following operators are discrete analogues of classical
notions in continuous potential theory (see for instance [22] and [14]).

Definition 2.12. Let u ∈ P(F̄ ). Then for x ∈ F , the function

(2.13) ∆u(x) =
∑

y∼x

c(x, y) (u(x)− u(y))

is called the Laplacian of u at x. For x ∈ δ(F ), let {y1, y2, . . . , ym} ∈ F be its neighbors.

The normal derivative of u at a point x ∈ δF with respect to a set F is defined by

(2.14)
∂u

∂n
(F )(x) =

∑

y∼x, y∈F

c(x, y)(u(x) − u(y)).

Finally, u ∈ P(F̄ ) is called discrete harmonic in F ⊂ V if ∆u(x) = 0, for all x ∈ F .

We will now turn a triangulation of a polygonal domain into a finite network endowed with
geometrically chosen conductances. The choice of the conductances depends on an interesting
relation between the given triangulation and its dual complex. These conductances are identical to
Stephenson’s (see (1.2)), however, in this paper they are motivated by a scheme of approximating
flux of smooth functions (see the next section) and the Finite Element Method (see Section A.2).

Let T be a triangulation of a polygonal domain Ω. The induced control volumes, or the Voronoi
cells which we will associate with a triangulation T are defined as follows. For each triangle
T ∈ T , let cT denote the circumcenter of T , which by definition is the intersection point of the
perpendicular bisectors of the edges. We join cT ′ to cT by a segment [cT ′ , cT ] whenever T and
T ′ share an edge. This procedure divides each (interior) triangle T into three quadrilaterals and
induces a new decomposition of Ω. The star of a vertex x ∈ T is defined as the union of all edges
and triangles in T that contain x and will be denoted by Star(x). The control volume Ωx of a
vertex x ∈ T is defined to be the star of x in this new decomposition.

Let {Tρ}ρ>0 be a family of τ -quasi-uniform triangulations of Ω (cf. Definition A.6). Let
Vρ(T ) denote the set of vertices of T ∈ Tρ, and let V 0

ρ (Tρ) denote the set of interior vertices of

Vρ(Tρ) = ∪T∈TρVρ(T ), enumerated by {xρ1, x
ρ
2, . . . , x

ρ
M(ρ)}. Each Ωxi is an open, simply connected,

and polygonally bounded set. Its boundary, ∂Ωxi , consists of finitely many (straight) line segments
Γi,j = ∂Ωxi ∩∂Ωxj , j = 1, . . . , ni, where ni is the number of vertices adjacent to xi; note that along
each Γi,j the normal n̂|Γi,j = n̂i,j is constant.
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xi

Γi,j

cT
Ωxi

xj

Figure 2.15. A circumcenter, the star of a vertex, and a Voronoi cell.

Definition 2.16. Let m(i,j) denote the length of Γi,j, and let dij = |xi − xj| denote the Euclidean
distance between xi and xj . Then the conductance of the edge [xi, xj ] is defined by

(2.17) c[xi, xj ] =
m(i,j)

dij
.

Hence, m(i,j) is equal to |cT−cT ′ |, where T and T ′ are the (only) two triangles that Γi,j intersects.
Given such a triangulation T of A, following [26, Chapter 2], for each one of its Voronoi cells Ωi
which is centered at xi ∈ T (0), we define two quantities which are determined by T :

(2.18) λi = λΩi
=

(

max
j∈Nxi

m(i,j)

)1/2

and λ = max
xi∈T (0)

λi,

where l(·) denotes Euclidean length.

In this paper, we will assume the following.

(V0): Every triangulation T is τ -quasi uniform for some fixed τ > 0 and consists exclusively
of nonobtuse triangles.

It is well known (see for instance [63]) that the τ -quasi uniform condition is equivalent to Zlámal’s
condition: there exists a positive constant, θmin, such that, for all T ∈

⋃

ρ Tρ, and for any angle θT
of T , we have

(2.19) θmin ≤ θT .

Assumption (V0) also implies that T is a Delaunay triangulation, i.e., no point in the vertex set
of T lies inside the circumcircle of any triangle in T , and the corresponding Voronoi diagrams can
be constructed by means of the perpendicular bisectors of the triangles’ edges (see for instance [3,
Theorem 6.5]).

We now define a class of combinatorial functions that will naturally appear in the next section.
The combinatorial counterpart of the real part of the uniformizing mapping of an annulus belongs
to this class of discrete functions.

Definition 2.20. Let α ∈ R be a positive constant. Let T be a triangulation of A, with Voronoi
cells {Ωi}i∈J . A function g : T (0) → R is said to be asymptotically harmonic of order α with respect
to conductance constants {c(i,j) = c(xi, xj)}, if there exists a non-negative constant, d, such that

(2.21)
∣

∣∆g(xi)
∣

∣ =
∣

∣

∑

j∈Nxi

c(i,j)
(

g(xj)− g(xi)
)
∣

∣ ≤ dλα, for all xi ∈ T (0).
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Figure 2.22. An illustration of the path γ (with arrows) in Lemma 2.23.

Note that the case d = 0 corresponds to g being discrete harmonic.

The following lemma provides an estimate for the summation of the normal derivative of g along
special closed curves in T (1). This sum encapsulates the discrete flux of g through the boundary of
the union of those Voronoi cells which such a closed curve encloses.

Lemma 2.23 (Asymptotic flux estimate). Let g : T (0) → R be a discrete, harmonic or asymptoti-
cally harmonic of order α, with respect to conductance constants {c(i,j)}. Then, for any homotopi-

cally trivial (in A), closed path γ ⊂ T (1) which contains an integer number of Voronoi cells Ωxi,

xi ∈ T (0), we have

(2.24)
∑

x∈γ

∂g

∂n
(x) = 0, if g is harmonic.

Furthermore, if g is asymptotically harmonic or order α, then there exists a positive constant, D,
such that

(2.25)
∑

x∈γ

∂g

∂n
(x) ≤ Dλα.

Proof. Let Ωm = ∪mi=1Ωxi be the maximal collection of control volumes enclosed in γ, and let Em
be those edges of T (1) that lies in the interior of the bounded region enclosed by γ. The first Green
identity (see for instance [7, Proposition 3.1]) implies that for u, v ∈ P(Ωm), we have that

(2.26)
∑

[i,j]∈Ēm

c(i,j)
(

u(i) − u(j)
)(

v(i) − v(j)
)

=
∑

x∈Ωm∩T (0)

∆u(x)v(x) +
∑

y∈γ

∂u

∂n
(Ωm)(y)v(y).

We now let v ≡ 1 in the above equality, and obtain
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(2.27) 0 =

m
∑

i=1

∆u(xi) +
∑

y∈γ

∂u

∂n
(Ωm)(y).

It therefore follows, by the definition of the combinatorial laplacian, that

(2.28) 0 =

m
∑

i=1

∑

j∈Ni

c(i,j)
(

u(j)− u(i)
)

+
∑

y∈γ

∂u

∂n
(Ωm)(y).

Hence, the first assertion of the lemma readily follows; the second assertion follows with D =
D(d,m).

�

With the notation of the lemma the following corollary easily follows.

Corollary 2.29 (Asymptotic path independence). Let γ1 and γ2 be two simple paths in T (1) ⊂ A
joining two vertices x1, x2 ∈ T (0), such that the path γ−1

2 ◦ γ1 is trivial in π1(A), and contains an
integer number of control volumes Ωxi. Then, if g is harmonic we have

(2.30)
∑

x∈γ1

∂g

∂n
(x)−

∑

x∈γ2

∂g

∂n
(x) = 0.

Furthermore, if g is asymptotically harmonic or order α, then

(2.31)
∣

∣

∑

x∈γ1

∂g

∂n
(x)−

∑

x∈γ2

∂g

∂n
(x)

∣

∣ ≤ Dλα.

Let g be a discrete, harmonic or asymptotically harmonic function. Inspired by the classical
construction of the harmonic conjugate function as recalled in Definition 2.8, we will define a
combinatorial conjugate to g using discrete sums, i.e, using discrete fluxes. To this end, we will
need to define a special class of paths in T (1). Thereafter, by summing a generalized version of the
normal derivative of g, along a path from this class, the combinatorial conjugate function of g will
be defined firstly at the vertices of the Voronoi cells of T . In the next section, it will be proved that
the imaginary part of a uniformizing map of a given annulus can be approximated by a sequence
of combinatorial conjugate functions of g.

We let Λ denote the union of all Voronoi cells of a given T . An interior cell is one such that its
vertex boundary is disjoint form ∂A. We now make the following:

Definition 2.32 (Flux fellow paths). Let ω0 be a fixed vertex in an interior Voronoi cell , and let ω
be any vertex in an interior cell of Λ. Let γΛ = [ω0, . . . , ωk = ω] be a simple, piecewise linear curve

in Λ(1) joining ω0 to ω, whose trace is disjoint from ∂A. For each [ωi, ωi+1], i = 0, . . . , k−1, let xi be

the vertex in T (0) on the unique edge intersecting [ωi, ωi+1], and which is to the right of [ωi, ωi+1].

Then γT = [x0, . . . , xk−1] ⊂ T (1) will be called the flux fellow path of γΛ (see Figure 2.33).

Remark 2.34. The discussion preceding condition (V0) grants us that γT is indeed a path in T (1)

(which is disjoint from ∂A); we orient each edge in the paths γΛ, γT according to an increasing
order of its vertices.

Note that γT is uniquely determined only after a choice of γΛ was made. However, vertices of
γT do not belong to the vertex boundary of any naturally defined domain in T (0). In light of the
coming applications, we will now extend the notion of the discrete normal derivative (see (2.14) in
Definition 2.12). The definition of the combinatorial conjugate function will utilize this generalized
version.
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x0 = x1

ω = ωk

ω1

ω2

ω0

xk−1

x2 = x3

Figure 2.33. A path γΛ ([ω0 . . . ωk]) in Λ(1), its flux fellow path γT ([x0 . . . xk])
in T (1), and edges for the flux computation (each emanates from the xi’s to
[xi, xi+1].

In the definition below, we will abuse notation and use the notation for normal derivative that
appeared in Equation (2.14).

Definition 2.35 (Flux through edges). For any vertex y ∈ γT , we define

(2.36)
∂g

∂n
(γΛ, γT )(y) =

∑

x∼y

c(x, y)
(

g(x) − g(y)
)

,

where the sum is taken over all those vertices x ∈ T (0) which are adjacent to y along an edge which
intersects γΛ.

We now make a combinatorial definition which imitates the smooth one (Definition 2.8).

Definition 2.37 (A combinatorial conjugate). Let T be a triangulation of A, and let Λ denote
the union of all Voronoi cells of T . Let ω0 be a fixed vertex in an interior cell of Λ, and let ω be
any vertex of an interior cell Λ. Let γΛ ⊂ Λ(1) be a simple, piecewise linear curve joining ω0 to ω
whose trace is disjoint from ∂A. Let γT ⊂ T (1) be the flux fellow path of γΛ.

(i) Let g be a discrete, harmonic or asymptotically harmonic function of order α. Then, for every
ω ∈ Λ, a (multivalued) combinatorial conjugate of g is defined by

(2.38) ḡ∗(ω) = ḡ∗(ω0) +
∑

y∈γT

∂g

∂n
(γΛ, γT )(y).

where ḡ∗(ω0) is some arbitrary, fixed real constant.

By choosing a vertex in each 2-cell in Λ(2) and drawing diagonals to its other vertices, this cell
is divided into triangles with vertices in Λ(0) and disjoint interiors. We then extend g∗ affinely over
edges in Λ(1) and over triangles in Λ(2). (By abuse of notation, the extended function will also be
called a combinatorial conjugate of g.)
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(ii) Let αΛ be any simple, counter-clockwise oriented, closed curve in Λ whose winding number
is equal to 1. The period of ḡ∗ is defined by

(2.39) period(ḡ∗) =
∑

ξ∈αT

∂g

∂n
(ξ).

Remark 2.40. It follows form Corollary 2.29 that if g is discrete harmonic (i) and (ii) are independent
of the choices of γΛ and γτ . If g is discrete and asymptotic harmonic of order α, then (i) and (ii)
hold up to (in absolute value) a factor of at most Dλα. Furthermore, combinatorial provisions
analogous to those in Remark 2.11 hold for ḡ∗.

Remark 2.41. The search for discrete analogues of conformal maps has a long and rich history. We
refer to [43] and [12, Section 2] for excellent recent accounts. We should also mention that a search
for a combinatorial Hodge star operator has recently gained much attention and is closely related
to the construction of a harmonic conjugate function. We refer the reader to [37] and to [46, 47]
for further details, examples, and applications of such combinatorial operators.

3. Uniformization of a planar annulus

In this section, we prove the main theorem of this paper, Theorem 3.13 which provides a discrete
scheme of approximation of the uniformizing map of a polygonal annulus. Thereafter, we will
prove that the hypotheses “polygonal boundary” in this theorem, can be relaxed to “continuous
boundary”.

We keep the notation of the previous sections and appendices. Let A be endowed with a family
of τ -quasi-uniform triangulations {Tρn} (cf. Definition A.6) such that ρn → 0, as n→ ∞. For each
Tρn , let the corresponding family of Voronoi cells be denoted by {Ωn = Ωρn} (see the discussion

proceeding Figure 2.15). We let Vρ(T ) denote the set of vertices of a triangle T ∈ T
(2)
ρ , and let

V 0
ρ (Tρ) denote the set of interior vertices of Vρ(Tρ) = ∪T∈TρVρ(T ).

For each vertex x, recall that Nx denotes the set of neighboring (in T (0)) vertices of x. In addition
to requiring that each triangulation is quasi-uniform, henceforth in this paper, we will assume the
existence of a constant τ0 such that for all ρn < τ0, the following hold:

(V1): The cardinality Nx of each vertex x ∈ T
(0)
ρn remains uniformly bounded, that is,

max
x

{card(Nx)} ≤ m∗ for some m∗ ∈ N;

(V2): Each point xi,j = [xi, xj ] ∩ Γi,j is the middle point of the segment Γi,j.

3.1. Stephenson’s conductance constants from a flux perspective. In this section, we will
continue to assume that A is a fixed polygonal annulus. We will construct a sequence of mappings,
obtained via a refined sequence of quasi-uniform triangulations and conductance constants along
edges according to (2.17), from the interior of A onto the interior of a concentric Euclidean annulus.
The image annulus is determined (see Equation (3.17)) by the solution of a specific smooth bound-
ary value problem defined on the domain: Laplace’s equation with non-homogeneous boundary
values. Theorem 3.13 demonstrates that the sequence converges uniformly on compact subsets to
a conformal homeomorphism.

In the proof of Theorem 3.13, we will need to consider a Dirichlet boundary value problem for the
Laplace equation with prescribed boundary data as formulated in (2.7). In fact, an approximation
scheme for this type of boundary value problem is obtained through the analysis of a naturally
defined different boundary value problem, i.e., one with prescribed Poisson data and homogeneous
boundary condition.
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In order to get the necessary analysis in place, let h be the continuous function defined on ∂A
by setting

(3.1) h|E1 = 1 and h|E2 = 0, and

let h̃ ∈ C2(A) ∩ C0(Ā) be an extension of h to the interior of A with ∆h̃ 6= 0. Recall that the
existence of such an extension is a consequence of Whitney’s seminal work [61].

We now define a Poisson boundary value problem, which is naturally associated with the Laplace
problem (2.7) we wish to solve, by

(3.2)

{

∆ũ = −∆h̃, in A

ũ = 0, on ∂A.

Remark 3.3. The existence and uniqueness of a strong solution to (3.2) follows (for instance) from

Corollary 2.5, by setting ũ = u− h̃, where u is the strong solution of (2.1).

3.2. The convergence of the piecewise linear approximations to the strong solution. In
this section, we will recall one of the main convergence results in a classical paper by Schatz and
Wahlbin [50]. This foundational quantitative result, derived explicitly by the finite element method
(see A.2), describes the rate of approximation of particular combination of piecewise linear maps
to the smooth solution of a Poisson boundary value problem with homogeneous boundary values.

For the applications of this paper, it is necessary to consider non-convex polygonal domains. In
order to approximate a given Jordan domain, which in general is not convex, we will construct a
sequence of necessarily non-convex polygonal domains where each domain is triangulated by acute
triangles, and each triangulation has a uniform upper and lower bounds on their largest and smallest
angles, respectively. However, due to the presence of corner singularities of vertex angles that are
bigger than π, the L∞ error analysis of the approximation provided by the finite element is quite
subtle (see for instance the monograph [25] for treatment of convergence in other norms).

Let Ω be a bounded, (possibly) non-convex, polygonal domain. Let ∂Ω denote the boundary
of Ω. Therefore, ∂Ω consists of a finite number of straight line segments meeting at vertices vj ,
j = 1, . . . ,M2, of interior angles 0 < α1 ≤ · · · ≤ αM2 < 2π; let βj = π/αj . We let Υj, j = 1, · · · ,M2,
denote the intersection of Ω with a disk centered at vj and such that Υj contains no other vertex,

and define Υ0 = Ω \ (∪M2
j=1Ῡj). Then, it is well known that the solution u of the boundary value

problem defined in (A.1) is not always in H2(Ω) (see for instance [25, Section 2]). However, for
every ǫ > 0, u always belongs to a fractional order Sobolev space H1+βM2

−ǫ(Υj) or CβM2
−ǫ(Ῡj),

and u ∈ C∞(Υ0) (cf. [50, page 74]).

The following foundational result was obtained by Schatz and Wahlbin in the 70’s. It is the main
analytical result which will be used in this paper.

Theorem 3.4 ([50, Theorem 4.1]). Let ǫ > 0 be given. Let ũ and ũρ be the solutions of (A.1) and
(A.16), respectively, with f ∈ Lp, p > 1. Then there exists a constant c = c(f, ǫ) such that for ρ
sufficiently small

(3.5) ‖ũ− ũρ‖L∞(Υ0) ≤ cρmin(2,2βM2
)−ǫ.

Since the polygonal domains in the applications of this paper are not convex, 1/2 < βM2 , hence,
min (2, 2βM2) = 2βM2 > 1.

Remark 3.6. There is another interesting part to this theorem which provides an L∞ estimate
inside Υj, j = 1, . . . ,M2 (we will not use this part in this paper).

Finally, let u be a solution of (2.7), hence, we may write u = ũ+ h̃. Thus, since with ũ we are
in the framework of (A.1), we can proceed with
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Definition 3.7. Let ũ and ũn = ũρn be the solutions of (3.2) and (A.16) with f = −∆h̃, respec-
tively. We will also assume that for every n > 0, ũn is presented by a linear combination of the
basis elements in V0,Tρn , as described in (A.17).

We also need a natural way to discretize h̃. Hence, let us denote the projection of h̃ on T
(0)
ρn by

Πn(h̃), that is,

(3.8) Πn(h̃)(x) = h̃(x), for every x ∈ T (0)
ρn ,

and then extend afinely over edges and triangles.

As the final preparation for the proof of our main theorem, let us recall a lemma due to Gross-
mann, Roos and Stynes. This important lemma provides an approximation of the integral of the
Laplacian of a smooth function, given for instance by the right-hand side of (3.2), by a discrete
quantity - a finite difference expression which utilizes Stephenson’s constants. Recall that we have
let m(i,j) denote the length of Γi,j, and dij = |xi−xj| denote the Euclidean distance between xi and

xj (see Definition 2.16). The conductance of the edge [xi, xj ] is then defined by c[xi, xj ] =
m(i,j)

dij
.

Lemma 3.9 ([26, Lemma 2.63]). Let Ω ⊂ R2 be a convex polygon. Assume that conditions (V1)
and (V2) hold. Assume that the solution of the Poisson boundary value problem with (possible)
non-homogenous boundary data

(3.10)

{

∆w = f, in Ω

w = g, on Γ = ∂Ω,

belongs to C2(Ω̄). Then there exists some constant c = c(w,Ω) such that

(3.11)

∣

∣

∣

∣

∣

∑

xj∼xi,j 6=i

m(i,j)

dij

(

w(xj)− w(xi)
)

−

∫

Ωxi

fdx

∣

∣

∣

∣

∣

≤ cλ3i ,

for all interior vertices xi, and where λi is defined by (2.18).

Thus, this lemma provides an estimate for the discrete flux along the full boundary of one
Voronoi cell of a solution of the boundary value problem (3.10). In the statement of this lemma, Ω
is assumed to be a convex polygon in R2. However, the proof remains valid even if the regularity
assumption of the solution is only assumed to hold for any close, proper subset of Ω with thick
enough neighborhood; that is, if the subset and its neighborhood are still contained in Ω. This
weaker regularity assumption will be used in the proof of Theorem 3.13, where we will also show
how to choose an appropriate thick neighborhood. Assumptions (V1) and (V2) are critical to the
proof of this Lemma.

Remark 3.12. Equation (A.21) complements (3.11) in regards to the terms appearing in the con-
ductances and exploits the connection to Stephenson’s conjecture (Conjecture 0.2) from the finite
element perspective.

3.3. The main theorem. With the notation above, we now turn to the main theorem of this
paper. In order to ease the notation, we will not distinguish between a map defined on the 0-
skeleton of a triangulation and the affine extension of the map on edges and triangles. Finally, for
every n, let Tn = Tρn .

Theorem 3.13. Let {Tn} be a sequence of quasi-uniform triangulations of A of mesh size ρn → 0
as n→ ∞, and let the corresponding family of Voronoi cells of each Tn be denoted by {Ωn}. Assume
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in addition that {Tn} satisfies conditions (V 1) and (V 2). Let the conductance of each edge e ∈ T ,

T ∈ T
(2)
n be defined by

(3.14) cn(e) =
mT

(i,j),n

dij,n
.

Let u and h be given in (2.7) and (3.1), respectively, and define (see Definition (3.7))

(3.15) gn = ũn +Πn(h̃).

Then, as n→ ∞ the following assertions hold:

(1) ‖u− gn‖L∞(A) → 0.

(2) On each proper, compact subset of A, the gn’s are asymptotically harmonic of order α = 3.

(3) Let ḡ∗n denote a suitable normalized combinatorial conjugate of gn, and let φn be the sequence
of discrete mappings defined by extending affinely over Ωn the sequence of discrete mappings
given by

(3.16) φn(ω) = exp
( 2π

period(ḡ∗n)

(

gn(ω) + iḡ∗n(ω))
)

, ω ∈ A ∩ Ω(0)
n .

Then a subsequence of {φn} converges uniformly on compact subsets of A to a conformal
homeomorphism, denoted by ΨA, onto the interior of the concentric Euclidean annulus EA,
whose inner and outer radii are given by

(3.17) {R1, R2} = {1, exp
( 2π

period(u∗)

)

},

where u∗ and period(u∗) are given in Definition 2.8.

Remark 3.18. By choosing conductance constants according to (3.14) for every ρn > 0, as predicted
in Stephenson’s Conjecture (see Conjecture 0.2), each Tρn is turned into a finite electrical network;
where for each n > 0, the homogeneous part of the induced potential function, ũn (see [53]), satisfies
the system of equations described by (A.24). We remark that since for each ρn > 0, the values of

un = uρn at the boundary vertices in ∂T
(0)
n ⊂ ∂Ω are given, there is no need to specify conductance

constants for edges that are contained in ∂Ω; or one can choose arbitrary values.

The proof is not short and will therefore be naturally divided into two parts. In the first part
assertions (1) and (2) will be proved. In the second and longer part, the proof of assertion (3)
which depends on (1) and (2), will be given.

Proof.

The proofs of assertions (1) and (2). By letting f = −∆h̃ in Theorem 3.4 (Schatz-Wahlbin [50,

Theorem 4.1]), we know that for the approximation of ũ by ũn (see (3.2)), the following estimate
holds. Let ǫ > 0 be chosen so that 2βM2 − ǫ = 1 + ǫ0 with ǫ0 > 0. Let ũ and ũρ be the solutions
of (A.1) and (A.16), respectively, with f ∈ Lp, p > 1. Since 1 > βM2 > 1/2, the assertion of the
theorem is that there exists a constant C = C(f, ǫ) such that for ρ sufficiently small

(3.19) ‖ũ− ũρ‖L∞(Υ0) ≤ Cρmin(2,2βM2
)−ǫ = Cρ1+ǫ0 .

Hence, as ρn → 0 we have

(3.20) ‖ũ− ũn‖L∞(Υ0) → 0.

Since h̃ is sufficiently smooth in Υ0, it is well known that there exists a constant C1 = C1(f,Υ0)
such that

(3.21) ‖h̃− Π̃n(h̃)‖L∞(Υ0) ≤ C1ρ
2,



18 SA’AR HERSONSKY

where Πn(h̃) is the affine interpolation of h (see (3.8)). Hence, as ρn → 0 we have

(3.22) ‖h̃− Π̃n(h̃)‖L∞(Υ0) → 0.

We now show that the gn’s comprise our desired approximations to u - the strong solution of the
smooth Dirichlet problem for the Laplace equation (2.7). Indeed, we have

(3.23)

‖u− (Πn(h̃) + ũn)‖L∞(Υ0) = ‖u− h̃+ h̃− (ũn +Πn(h̃))‖L∞(Υ0)

= ‖ũ+ h̃− (ũn +Πn(h̃))‖L∞(Υ0)

= ‖(ũ− ũn) + (h̃−Πn(h̃))‖L∞(Υ0)

≤ ‖ũ− ũn‖L∞(Υ0) + ‖h̃−Πn(h̃)‖L∞(Υ0).

Therefore, assertion (1) of the Theorem is proved by applying Equations (3.20) and (3.21), where
in fact, the rate of convergence is at least of the following order in ρ:

(3.24) ‖u− gn‖L∞(Υ0) = ‖u− (Πn(h̃) + ũn)‖L∞(Υ0) ≤ C2ρ
1+ǫ0 ,

for some constant C2 = C2(C,C1).

We now continue and prove assertion (2) by showing that for all n large enough, each gn is

asymptotically harmonic of order 3. We already observed that ũ + h̃ is a solution of (2.7)-the
Dirichlet non-homogeneous boundary value problem for the Laplace equation with boundary values
prescribed by h|∂A.

We now apply Lemma 3.9 with u = ũ+ h̃ and f = 0. It then follows that the following holds for
all n > 0

(3.25)

∣

∣

∣

∣

∣

∑

xj∼xi,j 6=i

m(i,j),n

dij,n

(

u(xj)− u(xi)
)

∣

∣

∣

∣

∣

≤ C3λ
3
i,n, with C3 = C3(u,Υ0).

By applying the law of sines in Euclidean geometry and the existence of a uniform lower bound
on the smallest angle (see (2.19)) in the sequence {Tn}, it is easy to see that the conductances cn
defined in (3.14) are uniformly bounded from above, with a bound depending only on θmin. Hence,
we finish the proof of (2) by applying the triangle inequality and assertion (1), in (3.24).

The proof of assertion (3). We now turn to prove the uniform convergence of the ḡ∗n’s, over compact
subsets of A, to u∗- the smooth harmonic conjugate of u. In particular, we will describe the
normalization needed in assertion (3) of the theorem. Let Aκ ( Υ0 ⊂ A be a compact annulus
with smooth boundary which is concentric with A, where κ = dist(∂A, ∂Aǫ) is small. Let ω0 be a
fixed point in Aκ, and we set u∗(ω0) = 0. Let ω be another fixed (for the moment) point in Aκ.

Let us choose N large enough so that for all n > N (i.e., ρn small enough) there exists a
triangulation Tρn ∈ {Tn} satisfying the following.

(V3): There exists a subset, J ′
n, of the set of interior vertices V 0

ρn(Tρn) such that the cor-
resposnding volume elements {Ωxi,ρn}xi∈J ′

n
is contained in Aκ, and the combinatorial one

vertex neighborhood of this subset, when considered in T
(0)
ρn , is also contained in Aκ.

For each n as above, following Definition 2.32 and the discussion following it, we choose one of
the vertices of a cell Ωxi,ρn with xi ∈ J ′

n, which is closest to ω0. This vertex will be denoted by
ωn0 . Let ωn be any vertex in the union Λρn = ∪xiΩxi,ρn which is the closest to ω. Let γρn[ωn

0 ,ω
n] =

[ωn0 , ω
n
1 , . . . , ω

n
k−1, ω

n] be a (piecewise linear) simple path in the one skeleton of Λρn which connects
ωn0 to ωn. Note that k is also a function of n.
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It then follows from Definition 2.8 and Remark 2.11, that the value of the smooth harmonic
conjugate function u∗ with base at ωn0 , is given by

(3.26) u∗(ω) =

∫

γΛρn
[ωn

0 ,ω
n]

∂u

∂n̂
ds+

∫ ωn
0

ω0

∂u

∂n̂
ds +

∫ ω

ωn

∂u

∂n̂
ds,

where the second integral is taken along any piecewise smooth curve joining ω0 to ω
n
0 , and the third

integral is taken along any piecewise smooth curve joining ωn to ω.

We now follow the notation in Definition 2.32, and we let γTρn denote the flux fellow path of
γΛρn

[ωn0 , ω
n]. Let us write γTρn = [xρn0 , . . . , xρnk−1] and let ḡ∗n(ω

n
0 ) = 0. Hence, by Definition 2.37,

the value of the corresponding combinatorial conjugate of gn = gρn is defined at ωn by

(3.27) ḡ∗n(ω
n) =

∑

x∈γTρn

∂gn
∂n

(γΛρn
, γTρn )(x).

Note that as explained in Remark 2.40, this value may change by (up to) Dλ3n, if a different path
connecting ωn0 to ωn and afterwards a different flux fellow path are chosen. Recall that D = D(n,m)
with m being the maximal number of Voronoi cells which belong to Λρn and are contained in Aκ.
We will address this issue again after completing the following analysis.

We now turn to proving that as n→ ∞,

(3.28) |u∗(ω)− ḡ∗n(ω)| → 0

uniformly in Aκ.

As n → ∞, ∪iΩ
(0)
xi,ρn with xi ∈ J ′

n comprises a dense subset of Aκ. In particular, by choosing
ωn0 → ω0 and ωn → ω as n → ∞, and due to the uniform continuity of the second and third
integrals in (3.26) and the ḡ∗n in Aǫ, we only need to bound from above the difference

(3.29) |u∗(ωn)− ḡ∗n(ω
n)| =

∣

∣

∣

∫

γΛρn
[ωn

0 ,ω
n]

∂u

∂n̂
ds−

∑

x∈γTρn

∂gn
∂n

(γΛρn
, γTρn )(x)

∣

∣

∣
.

To this end, following the definition of flux through edges, Definition (2.35), and the first assertion

of the theorem, we will first show that we can replace each ∂gn
∂n (γΛρn

, γTρn )(x) in the second integrand

in (3.29), by m(i,j),n
∂u

∂n̂ (i,j),n
(xni,j).

As we noted before, u ∈ C2(Aκ), and therefore Equation (5.11) in [26, Chapter 2] shows that for
xni = xi,ρn , x

n
j = xj,ρn , Γ

n
i,j = [ωni , ω

n
j ] and n

n
i,j its outward pointing normal unit vector, and with

λi,n = λi,ρn (see (2.18)), there exists a positive constant C0 = C0(u,A
κ) so that

(3.30)
∣

∣

∣

1

dij,n

(

u(xnj )− u(xni )
)

−
∂u

∂n̂ (i,j),n
(xni,j)

∣

∣

∣
≤ C0λ

2
i,n, xi ∈ J

′
n, xj ∈ Nxi,n,

where Nxi,n denotes the set of neighbors of xni in T
(0)
ρn .

Let T be any triangle in a triangulation in {Tn}. As we argued in the proof of part (2), we have
a uniform upper bound on the ratios m(i,j),n/dij,n in {Tρn}, where the bound depends only on θmin.
Hence, by applying the triangle inequality, multiplying Equation (3.30) by m(i,j),n, and assertion
(1), we obtain that the bound

(3.31)
∣

∣

m(i,j),n

dij,n
(gn(x

n
j )− gn(x

n
i ))−m(i,j),n

∂u

∂n̂ (i,j),n
(xni,j)

∣

∣ ≤ C2ρ
1+ǫ0
n + C0λ

3
i,n,

which implies that the left hand-side of (3.31) converges to zero uniformly in Aκ.
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For all xi ∈ J
′

n, xj ∈ Nxi,n , let the continuous linear functional T
n
i,j = T nΓi,j

on C3(Ω̄xi) defined by

(3.32) T ni,j(u) =

∫

Γn
i,j

∂u

∂n̂ (i,j),n
ds−m(i,j),n

∂u

∂n̂ (i,j),n
(xni,j).

The proof leading to Equation (5.15) in [26, Chapter 2] shows that the following estimate holds

(3.33) |T ni,j(u)| ≤ C4λ
3
i,n, , where C4 = C4(u,Ωxi,ρn).

ForW ⊂ A and any two points a, b ∈W , we let D(a, b) denote the pseudo-distance onW defined
as the infimum of the Euclidean lengths of curves inW that join a to b. We then define the intrinsic
diameter of W by

(3.34) IDiam(W ) = sup{D(a, b) | a, b ∈W}.

We will now estimate (where by (2.18) λn = max
xi∈T

(0)
n

λi,n)

(3.35)
∣

∣

∣

∫

γΛρn
[ωn

0 ,ω
n]

∂u

∂n̂
ds−

k(n)
∑

i=0

m(i,i+1),n
∂u

∂n̂
(xni,i+1)

∣

∣

∣
=

∣

∣

∣

k(n)
∑

i=0

(

∫

[ωn
i ,ω

n
i+1]

∂u

∂n̂ (i,i+1),n
ds−m(i,i+1),n

∂u

∂n̂ (i,i+1),n
(xni,i+1)

)

∣

∣

∣

≤

k(n)
∑

i=0

∣

∣

∣

(

∫

[ωn
i ,ω

n
i+1]

∂u

∂n̂ (i,i+1),n
ds−m(i,i+1),n

∂u

∂n̂ (i,i+1),n
(xni,i+1)

)

∣

∣

∣

≤
IDiam(Aκ)

λn
c2(u,A

κ)λ3i,n (since k(n) ≤
IDiam(Aκ)

λn
)

≤ C4(u,A
κ)λ−1

n λ3i,n

≤ C4(u,A
κ))λ2n.

It is evident that as n → 0 we have that λn → 0, hence, the left hand-side of (3.35) converges
uniformly to zero in Aκ. We are now able to obtain the desired upper bound for (3.29). Indeed,

(3.36)
∣

∣

∣

∫

γΛρn
[ωn

0 ,ω
n]

∂u

∂n̂
ds−

∑

x∈γTρn

∂gn
∂n

(γΛρn
, γTρn )(x)

∣

∣

∣
≤

∣

∣

∫

γΛρn
[ωn

0 ,ω
n]

∂u

∂n̂
ds−

k(n)
∑

i=0

m(i,i+1),n
∂u

∂n̂ (i,i+1),n
(xni,i+1)

∣

∣

+
∣

∣

k(n)
∑

i=0

m(i,i+1),n
∂u

∂n̂ (i,i+1),n
(xni,i+1)−

∑

x∈γTρn

∂gn
∂n

(γΛρn
, γTρn )(x)

∣

∣.

Since a bound on the first term in the left hand-side is established in (3.35), we only need to
bound uniformly from above the second term in (3.36). To this end, using the estimate in (3.31)
we can write

(3.37)

∣

∣

k(n)
∑

i=0

m(i,i+1),n
∂u

∂n̂ (i,i+1),n
(xni,i+1)−

∑

x∈γTρn

∂gn
∂n

(γΛρn
, γTρn )(x)

∣

∣ ≤
IDiam(Aǫ)

λn
(C2ρ

1+ǫ0
n + C0λ

3
i,n).
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The uniform lower bound on the smallest angle implies that ρn ≤ C5(θmin)λn, hence we have
(3.38)
IDiam(Aκ)

λn
(C2ρ

1+ǫ0
n +C0λ

3
i,n) ≤ C5(u,A

κ)λ−1
n ρ1+ǫ0n + C4(u,A

κ)λ−1
n λ3i,n ≤ K(u,Aκ)(ρǫ0n + λ2n).

To end this part of the argument (as we mentioned after (3.27)) we now assume that a different
path connecting ωn0 to ωn is chosen. This will yield a different choice of a flux fellow path and a
new normalized conjugate function. However, we may use the triangle inequality, estimate (3.35),

and the fact that n ≤ IDiam(Aκ)
λn

to obtain the same kind of estimate for the new conjugate function.

We also need to prove that

(3.39) period(ḡ∗n) → period(u∗).

To this end, let us choose a point P0 in Aκ, and let β and period(u∗) be given according to
Definition 2.8. Furthermore, let pn ∈ Λρn be chosen so that pn → P0. Let γTn be a closed curve in

Λ
(1)
n , based at pn according to which period(ḡ∗n) is computed.
Since u∗ is continuous in Aκ, we have

(3.40) u∗(pn) → u∗(P0) as n→ ∞.

By applying the analysis leading to the estimate in (3.28) with pn replacing ωn, we now conclude
that (3.39) holds.

It now follows that (up to choosing a subsequence) the φn’s converge uniformly on compact
subsets of A to

(3.41) ΦA(z) = exp
( 2π

period(u∗)

(

u(z) + iu∗(z))
)

.

We end the proof by recalling a classical result (see for instance [17, Section 7] or [60, Theorem
4.3]) which asserts that ΦA is a conformal homeomorphism between the interiors of A and EA,
respectively.

Theorem 3.13

3.4. The case of continuous boundary. In this paragraph, we will briefly indicate why the
boundary regularity assumption in Theorem 3.13 can be relaxed. Assume that A is a planar
annulus, where ∂A is a union of disjoint, Jordan curves.

Definition 3.42 ([42, I.6.7]). A sequence of planar annuli Rj ⊂ R, j = 1, 2, . . ., with {C1
j , C

2
j } as

the components of their complements, converges from the inside to an annulus R with {R1,R2} as
components of its complement, if the following holds: for every ǫ > 0 there exists nǫ such that for
n ≥ nǫ every point of (Cij)i=1,2 lies within a spherical distance less than ǫ of the set (Ri,R2)i=1,2.

A classical construction due to Kellogg [39, Chapter XI.14] grants us an existence of a nested
sequence of annuli, {Ai}, where for all i > 0, {Ai} ( A, the boundary of Ai is polygonal, and
the sequence converges to A from the inside. Furthermore, since each Ai is made of a lattice of
squares, it is easy to construct a sequence of qausi-uniform triangulation of each Ai, where each
triangulation satisfes assumptions (V0)-(V3). Thus, A is presented as an increasing union of open
subsets. The interiors of the Ai and each conformal embedding ΦAi

can be approximated according
to Theorem 3.13. It follows that, up to normalization of the maps ΦAi

, a subsequence of the {ΦAi
}

will converge uniformly on compact subsets of A, to its uniformizing map (see for instance [52,
Lemma 2.2] or [10, Page 223 ]). Hence, we have the following

Corollary 3.43. With the additional approximation processes described in the paragraph above, we
may assume in Theorem 3.13 that ∂A is continuous.
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The following figures depict the evolution of two polygonal annuli under the approximation
scheme provided in Theorem 3.13.

Figure 3.44. Two triangulated polygonal annuli
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Figure 3.45. The corresponding images of the Voronoi cells
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Figure 3.46. Almost round annuli as the images of the polygonal annuli
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4. The simply connected case

In this section, we will affirm Stephenson’s Conjecture (Conjecture 0.2) which was originally
stated for the case of a bounded, simply connected, planar domain. Our point of departure is
Theorem 3.13 whose notation will be closely followed. The proof of this case entails on successively
applying this theorem to an increasing sequence of annuli, a known modification of Koebe’s com-
pactness theorem, Riemann’s removable singularity theorem, a lemma concerning the monotonicity
of periods, and a basic covering property of planar Riemann surfaces.

In the following, we will let

(4.1) σ(z) =
1

z
,

be the standard inversion of C; it is well known that σ is conformal. We can now turn to

Theorem 4.2. Let Ω be a simply connected domain, embedded in C and bounded by a closed,
continuous curve Γ; let p0 ∈ Ω be a fixed point. Let {Ωn} ⊂ Ω be a nested sequence of disjoint,
polygonal, Jordan disks with polygonal boundaries {Θn} such that the disks converge to p0, that is,

(4.3) Ω1 ⊃ Ω2 . . . ⊃ Ωk . . . ,

(4.4) mesh(Ωn) → 0 as n→ ∞, and

(4.5) p0 = ∩nΩn.

For each n, let An = An(Ω,Θn) be the polygonal annulus defined by Ω \Ωn with ∂An = Γ ∪Θn,
endowed with a sequence of quasi-uniform triangulations {Tm,An}

∞
m=1, such that for all m = m(An)

large enough, Tm,An satisfies the hypotheses of Theorem 3.13. Let

(4.6) Φn = Φn(An) : An → En

be the sequence of conformal homeomorphisms constructed according to Equation (3.16) onto the
interior of concentric Euclidean annuli En, whose inner and outer radii are given by, respectively

(4.7) {R1, R2,n} = {1, exp
( 2π

period(u∗n)

)

},

where u∗n is the (smooth) harmonic conjugate of un, the solution of the boundary value problem
(2.7) defined on An.

Then, a normalized subsequence of {σ ◦Φn} converges uniformly on compact subsets of Ω \ p0 to
a holomorphic homeomorphism Ψ from Ω \ p0 onto D \ 0. Furthermore, Ψ can be extended to be
holomorphic over Ω.

Proof. Following the rationale preceding Corollary 3.43, we may assume that Γ is polygonal. By
construction, the {An} is a strictly increasing sequence, that is,

(4.8) A1 ( A2 ( . . . ( Ak . . .

which all share Γ = ∂Ω as their outer boundary component, and with Ω \ {p0} being their union.
The following lemma is needed in order to understand a monotonicity property of the sequence
{An}.

Lemma 4.9. The sequence {period(u∗n)} is strictly decreasing.
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Proof. By Green’s theorem, for all n > 1 we have that,

(4.10)

∫

An

|∇un|
2dx+

∫

An

∆unundx =

∫

∂An

∂un
∂n

ds.

However, by the definition of period(un), and since un is the solution of the boundary value problem
(2.7) defined on An, for all n > 1, we have that

(4.11)

∫

An

|∇un|
2dx = period(un).

It is clear that for all n > 1, un can be extended to be zero on An+1 \An+1 to a piecewise smooth
function on An+1 having the same boundary values as those of un+1. The assertion of the lemma
now follows by the well-known characterization of un+1 as the unique minimizer of the Dirichlet
integral over An+1.

Lemma 4.9

It follows from Equation (4.1), Equation (4.7) and the Lemma, that the sequence {An = σ(En)}
consists of planar, concentric, Euclidean annuli, such that the inner and outer radii of each An are
given by

(4.12) {r1, r2,n} = {1, 1/ exp
( 2π

period(u∗n)

)

},

respectively; where the sequence {r2,n} is strictly decreasing. Note that all the An’s share S
1 = ∂D

as their outer boundary component,

(4.13) A1 ( A2 ( . . . ( Ak . . . ,

and the sequence {An} exhausts D \ 0.

A3

p0

Ω

z0

ξ0

{σ ◦ Φn}
A1

A2

A3

A1
A2

{fn ◦ σ ◦ Φn}

Figure 4.14. The evolution of Ω.
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Pick z0 ∈ A1, a local complex parameter at z0, and a fixed ξ0 ∈ C. For all n > 1, we now apply
a normalization by post composing σ ◦ Φn with a conformal embedding fn : An → C so that the
composed maps

(4.15) Ξn = fn ◦ σ ◦ Φn : An → C

satisfy

(4.16) Ξn(z0) = ξ0 and Ξ′
n(z0) = 1.

Note that the image of each An is still a concentric Euclidean annulus, yet the sequence {Ξn(An)}
is not (generically) concentric. Nevertheless, it follows from a modification of Koebe’s compactness
theorem (see for instance [16, Proposition 7.15]) and a Cantor diagonalization process, that a
subsequence of the {Ξn} converges uniformly on compact subsets of Ω\p0, to a conformal, univalent
mapping

(4.17) Ξ : Ω \ p0 → C,

which is obviously not constant. It is also evident that Ξ is bounded, and therefore, by Riemann’s
removable singularity mapping theorem, can be extended to a conformal, univalent, embedding from
Ω. Hence, the extended map must be equal to the Riemann mapping with the same normalization.
This ends the proof of the Theorem.

Theorem 4.2

Our current research is addressing the following themes.

1. Disk packing and quasi-uniform triangulations. It is well known (see for instance [19,
Section 5]) that a sequence of disk packings satisfying some minor conditions, induce (as explained
in A.7) a sequence of quasi-uniform triangulations, that will in addition satisfy assumptions (V0)
and (V1). However, assumption (V2) (see page 14) will not always be satisfied; it will be satisfied
(for instance) for sub-packings of scaled copies of the infinite hexagonal disk packing (which were
the subject of Thurston’s original conjecture). Recall that assumption (V2) was used in the proof
of Theorem 3.13 only in the part addressing the convergence of the ḡ∗n.

2. The case of higher connectivity. As mentioned in the introduction, Stephenson’s original
conjecture can be formulated for any finitely connected, Jordan domain. However, several issues
need to be addressed before an appropriate statement can be made. For instance, the existence
of singular points and level curves for smooth harmonic functions solving a Dirichlet problem
(analogous to the one in Theorem 3.13) on such domains needs to be addressed.

3. Effective computational approach through parallel processing. Polygon approximation
of the boundary curves in the 2D or the 3D shape is essential for the computational aspects of
this work and its successors. It will be used to smooth out any irregularities which may be present
in the planar curves due to various effects, and to achieve data reduction. In order to turn the
computational problem to a parallel processing scheme, it is natural to utilize techniques from
[4, 38] and a decomposition of the given domain to subdomains as proposed in [34]. Finally, we will
compare our computational results with those obtained in [5] for the cases of scaling and rotation
which are two useful transformations in the field of computer vision and imaging.
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Appendix A. preparatory facts

A.1. The finite element method. In this section, we will assume that Ω is a fixed, bounded,
m-connected with m ≥ 2, polygonal domain in R2. The finite element method (FEM) is a powerful
discretization scheme, aimed at constructing and presenting approximations of solutions of partial
differential equations in the form of algebraic set of equations; the unknowns are the coefficients of a
linear combination of the basis elements of a linear space comprising of simple functions: piecewise
linear polynomials.

The phrase “finite element” reflects on the process of approximation. The domain in which the
boundary value problem is define is divided into a collection of subdomains, where each subdomain
is presented by a set of element equations derived from the original problem. One then systemat-
ically combines all of the sets of element equations into a global system of equations for the final
calculation.

We now turn to a specific boundary value problem that we will consider, the homogeneous
Dirichlet equation: Given f 6= 0 ∈ L2(Ω), find ũ ∈ C2(Ω) ∩ C(Ω̄) satisfying

(A.1) △ũ = f in Ω, and ũ = 0 on ∂Ω.

Such a solution is called a strong solution.

A common theme in finite element method is to triangulate the domain in a geometric convenient
way.

Definition A.2. A triangulation T of Ω is a set of (closed) triangles Ti, i = 1, . . . , n such that the
following hold

(A.3) Ω̄ =

n
⋃

i=1

Ti, and Ti ∩ Tj = ∅, a vertex or one common edge, for all i 6= j.

The following quantity is associated with a fixed triangulation.

Definition A.4. Let T be a triangulation on Ω, the mesh size of T is equal to

(A.5) sup
T∈T

d(T ),

where d(T ) denotes the diameter of T (i.e., the length of its largest edge). Henceforth, Tρ will
denote a triangulation of Ω of mesh size that is equal to ρ.

In order to apply the machinery of numerical approximation of elliptic boundary value problems,
one needs to avoid situations where triangles, in any triangulation Tρ of the domain, become flat
as ρ → 0. To this end, we let σ(T ) denote the diameter of the largest circle that can be inscribed
in a triangle T . We now define the geometric property of the special class of triangulations that
will be used throughout this paper.

Definition A.6. A family of triangulations {Tρ} of Ω is called τ -quasi-uniform (or τ -quasi-regular)
when ρ→ 0, if there exists a positive constant τ such that

(A.7)
d(T )

σ(T )
≤ τ for all T ∈ Tρ, and for all ρ small enough.

Given a triangulation we will now associate to it a vector space of functions.

Definition A.8.

(A.9) V0,T = {φ : Ω → R |φ ∈ C(Ω̄), v|T ∈ P1(T ) for all T ∈ T and φ = 0 on ∂Ω},

where P1(T ) denotes the space of linear polynomials in two variables over T .
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Let V 0(T ) denote the set of vertices in T (0) which are in the interior of Ω, and set

(A.10) M1 = |V 0(T )|,M2 = |T (0) ∩ ∂Ω| and M =M1 +M2 (= |T (0)|).

It is well known that V0,T is a finite dimensional vector space which is spanned by {φi} - the nodal
basis; where by definition

(A.11) φi(xj) = δi,j, for all xj ∈ V 0(T ), i = 1, . . . ,M1.

One important feature of V0,T is that it is a linear subspace of a certain Sobolev space. Let us
first recall

Definition A.12. The Sobolev space H1,2(Ω) is the subset of L2(Ω) defined by

(A.13) H1,2(Ω) = {v ∈ L2(Ω) | ∂xv, ∂yv ∈ L2(Ω)},

where ∂xv, ∂yv denote the distributional derivatives of v in the x and the y directions, respectively.
The integration is with respect to the standard Lebesgue measure in the plane which will be denoted
by dx.

For u, v ∈ H1,2(Ω), one defines the scalar product and an associated norm, respectively, by

(A.14) (u, v)1,2 =

∫

Ω
(uv +∇u · ∇v), |u|21,2 = (u, u)1,2

where ∇v = (∂xv, ∂yv), and the scalar product is the Euclidean one in R2. It is well known that

H1,2(Ω) equipped with this scalar product is a Hilbert space. Finally, let H1,2
0 (Ω) be defined as the

closure of C∞
0 (Ω) in H1,2(Ω) with respect to this norm. Equipped with this scalar product H1,2

0 (Ω)

is a Hilbert space as well. It is a useful fact that V0,T is a linear subspace of H1,2
0 (Ω).

The first step in finite element method amounts to finding the weak solution of the boundary
value problem (A.1). That is, finding u ∈ H1,2

0 (Ω) such that

(A.15)

∫

Ω
∇u · ∇v dx =

∫

Ω
fv dx, for all v ∈ H1,2

0 (Ω).

Next, one replaces the space H1,2
0 (Ω) by a sequence of linear subspaces that exhaust it, i.e., one

lets ρ converge to zero and search for a solution of the above equation in V0,Tρ : Finding uρ ∈ V0,Tρ

such that

(A.16)

∫

Ω
∇uρ · ∇vρ dx =

∫

Ω
fvρ dx, for all vρ ∈ V0,Tρ .

In section 3.2, we recall a foundational result concerning the convergence of the piecewise linear
polynomials uρ as ρ converges to zero.

A.2. Stephenson’s conductance constants - a finite element method perspective. In this
section, we will work with an explicit form of the solution uρ of (A.16). We will recall the known fact
that uρ (for each ρ) can be derived form the solution of a system of finitely many linear equations.
Following this, we will define a quantity, the discrete flux of uρ, which will be used in this paper to
approximate the analytical flux of u, the solution of (A.1). To this end, note that the interpolation
conditions in (A.11) allows us to write in a unique way

(A.17) uρ(x) =

M1
∑

i=1

uρ(xi)φi(x), for x ∈ Ω,
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where the unknowns are uρ(xi) for all i = 1, . . . ,M1. Therefore, if we define uρ(i) = uρ(xi) for all
i = 1, . . . ,M1, then our vector of unknowns for uρ is given by ξρ = (uρ(1), . . . , uρ(M1)). Hence,
(A.16) can be written as the following matrix equation

(A.18) Aρξρ = qρ,

where we have for all i, j = 1, . . . ,M1

(A.19)
(Aρ)i,j =

∫

Ω ∇φj · ∇φi

(qρ)i =
∫

Ω fφi

We keep the notation as in the discussion preceding Figure 2.15. The following lemma and its
corollary allow us to turn each Tρ into a finite network and provide a relation between Stephenson’s
constants and the Finite Element Method.

Lemma A.20 ([3, Lemma 6.8]). Let T be any fixed triangulation of Ω, and consider its corre-
sponding Voronoi diagram. Then, for an arbitrary triangle T ∈ Tρ with vertices xi, xj(i 6= j), the
following relation holds

(A.21)

∫

T
∇φj · ∇φi dx = −

mT
(i,j)

dij
,

where mT
(i,j) is the length of the segment of Γij which intersects T.

A computation then shows that

Corollary A.22 ([3, Corollary 6.9]). Under the assumptions of Lemma A.20, we have

(A.23)

∫

Ω
∇uρ · ∇φi dx =

∑

xj∼xi,j 6=i

m(i,j)

dij

(

uρ(xi)− uρ(xj)
)

.

Hence, by letting the index i range over the indices of the interior vertices (i.e, those that are in
V 0
ρ (Tρ)), (A.19) turns into the following system of linear equations

(A.24)
∑

xj∼xi,j 6=i

m(i,j)

dij

(

uρ(xi)− uρ(xj)
)

=

∫

Ω
fφi dx, for all i = 1, . . . ,M.

Remark A.25. Note that when f ≡ 0, uρ is a discrete harmonic function on T
(0)
ρ with the conduc-

tance constant
m(i,j)

dij
for the edge joining xi to xj .
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