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Abstract This paper is a survey of the work of the authors [21], [2], [22], with
a new application to Diophantine approximation in the Heisenberg group. The
Heisenberg group, endowed with its Carnot—Carathéodory metric, can be seen as
the space at infinity of the complex hyperbolic space (minus one point). The rational
approximation on the Heisenberg group can be interpreted and developed using
arithmetic subgroups of SU(n,1). In the appendix, the case of hyperbolic surfaces
is developed by Jouni Parkkonen and the second author.

1 Introduction

Let M be a geometrically finite pinched negatively curved Riemannian mani-
fold with at least one cusp. Inspired by the theory of Diophantine approxima-
tion of a real (or complex) number by rational ones, we developed a theory of
approximation of geodesic lines starting from a given cusp by ones returning
to it. We proved [21] a Dirichlet-type theorem, expressing its Hurwitz-type
constant in terms of the lengths of closed geodesics and their depths outside
the cusp neighbourhood. Using the cut locus of the cusp, we defined [21] an
explicit approximation sequence for geodesic lines starting from the cusp. We
proved [22] a Khintchine—-Sullivan type theorem on the Hausdorff measure of
the geodesic lines starting from a cusp that are well approximated by cusp
returning ones.

We state some of these results here, illustrating them by the well-known
examples of the modular curve and the Bianchi orbifolds. We have tried
to keep in section 2 the informal presentation of the talk at the March
2000 Cambridge conference. Connections between Diophantine approxima-
tion problems and hyperbolic geometry have already been studied a lot (see
for instance [1], [9], [13], [14], [17], [18], [23], [31], [36], [34], [37], [39], [41],
[26]) and we apologize for the omissions and a very partial presentation of
the field. The main point of this contribution is to work in variable curva-
ture, with surprises coming from the fact that the geometry of the cuspidal
ends can be much more complicated. We get new applications even in the
constant curvature case. The case when M is a complex hyperbolic manifold
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yields new important results about the Diophantine approximation in the
Heisenberg group.

2 The Survey Part

Let M be a smooth complete Riemannian manifold, with sectional curvature
—k%? < K < —1 where 1 < k < 4+00. We will assume in this paper that M has
finite volume, and has exactly one cusp. See [21], [2] and [22] for the general
case.

Two geodesic rays are asymptotic if they remain within bounded Hausdorff
distance. A cusp e in M is an asymptotic class of minimizing geodesic rays in
M along which the injectivity radius converges to 0. We say that a geodesic
ray converges to e if some subray belongs to the class e.

Since M has finite volume and one cusp, it has exactly one end, whose
neighbourhoods are exponentially thin near infinity. More precisely, by Gro-
mov’s theorem on almost flat manifolds (see for instance [6]), there exist
an infranilmanifold N and an homeomorphism from a neighbourhood of the
end to N x [0,4o00[, such that the diameter of the image in M of N x {t}
is less than e~t. (An infranilmanifold is just a quotient of a nilpotent Lie
group, endowed with a left-invariant metric, by a discrete torsion-free group
of isometries.)

Ezample 2.1. Let Hfg be the real hyperbolic plane, seen as the upper half-
plane {(z,t) € R? : t > 0} with the Riemannian metric ds?® = da?4dt?
which has constant curvature —1. We identify PSLy(R) with the (orienta-

az+b
cz+d*

tion preserving) isometry group of ]HIHQQ by sending + <LCL Z) to z —

Let PSLy(Z) be the modular subgroup of PSLy(R). Then PSLy(Z)\H 2 is an
orbifold, with two orbifold points of order 2 and 3, and one cusp.

Example 2.2. Let d be a square-free positive integer. Let O_4 be the ring
of integers in the imaginary quadratic field Q(v/—d). Let H} be the real
hyperbolic space of dimension 3, seen as the upper half-space {(z,y,t) €

R3 : ¢t > 0} with the Riemannian metric ds?> = M, which has
constant curvature —1. We identify PSLy(C) with the (orientation preserving)
isometry group of H2. Let PSLy(O4) be the Bianchi subgroup of PSLy(C).
Then PSLy(04)\H3 is an orbifold. Note that this orbifold has one and only

one cusp if and only if d =1,2,3,7,11,19,43,67, 163 (see for instance [38]).

Both examples are orbifolds and not manifolds. But there are only minor
modifications, left to the reader, in order for the following arguments to be
adapted for them.

The end e of M has a canonical neighbourhood, called the mazimal Mar-
gulis neighbourhood, constructed as follows (see for instance [6]).
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We first recall some elementary facts about the universal covering of neg-
atively curved manifolds, see for instance [5]. Let M be a fixed universal
covering of M, with covering group I'. The boundary OM of M is the set of
asymptotic classes of geodesic rays in M. The class of a geodesic ray is called
its point at infinity. The set M U OM is endowed with the cone topology. It
is the unique metrizable compact topology such that p(t), as ¢t tends to +oo,
converges to the point at infinity of p, for every geodesic ray p in M , and
such that, for every point z in M, the map T'M — M, which sends a unit
tangent vector to the point at infinity of the geodesic rays it defines, is a
homeomorphism. o

For ¢ in OM, the Busemann function B¢ : M x M — R is defined by

ﬁﬁ(may) = tliglo d($,§t) N d(y7§t)

for any geodesic ray ¢ — & converging to . The horospheres centered at {
are the level sets of x +— B¢(z,y) (for any y in M), and the (open) horoballs
are the (strict) sublevel sets.

Let & be a point on the boundary OM of M , which is the endpoint of a
lift of a geodesic ray converging to e. Let I be the stabilizer of § in I", which
is nontrivial. Its nontrivial elements are parabolic isometries of M, that is,
their only fixed point in M U dM is &, and they preserve each horosphere
centered at &y. By the Margulis lemma (see for instance [6]), there is a unique
maximal open horoball HBy centered at &, such that I'y\ HBy embeds in M
under the canonical map FO\M — M. This subset of M is called the mazimal
Margulis neighbourhood of the cusp e. For every v € I', note that vHB( meets
HBy if and only if v belongs to Iy. We denote by Hy the horosphere centered
at & which is the boundary of HB.

universal height
—_— —_—

cover T function

Fig. 1: Precisely invariant horoballs and height function
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Ezample 2.3. The boundary of Hp is the union of the horizontal coordinate
hyperplane and the point at infinity oo of all vertical geodesic rays. The
horospheres in H are the horizontal hyperplanes and the Euclidean spheres
tangent to the horizontal coordinate hyperplane. We will draw pictures using
a projective transformation mapping the upper half space to the unit ball; the
horospheres become the Euclidean spheres in the unit ball that are tangent
to the unit sphere. For the modular group PSLy(Z) or the Bianchi groups
PSL2(04), we will take &, = oo. The parabolic subgroup I} is the subgroup
of upper triangular matrices. The maximal open horoball as above for the
modular group is HBy = {(z,t) € R? : ¢ > 1} and for the Bianchi groups is
HBy = {(z,y,t) e R® : t > 1}.

Let p be any minimizing geodesic ray in M starting from a point on the
boundary of the maximal Margulis neighbourhood of e and converging to e.
Define the height function on M (with respect to e) as

Buw) = lim ¢ — d(u, p(t)).-

t——+oo

Note that G(u) = inf e Bye, (Y20, @) for any lift % in M of a point u in M
and any z in Hy. This map is Lipschitz, piecewise smooth and proper on M,
and positive precisely on the maximal Margulis neighbourhood of the cusp.
We obviously define the height of a point of M as the value of § at that point.
If A is a compact subset of M, we define its height as the maximum of the
heights of its points. Here is our first invariant of M.

Define hps as the lower bound of the heights of the closed geodesics in M.

For instance, let M, 1 be the space of isometry classes of complete, finite
volume hyperbolic metrics on S, 1, the compact, connected, oriented surface
with genus g and one point removed.

MQJ —
X — hX

Proposition 2.1 (|21, Proposition 4.2]) The map h : { is con-

tinuous and proper.

In fact, h(X) converges to —oo as X leaves every compact subset of the
moduli space My 1. Indeed, by Mumford’s lemma, if X leaves every compact
set, then it develops a shorter and shorter closed geodesic. By Margulis’
lemma, such a closed geodesic is simple, and has a tubular neighbourhood
whose radius is bigger and bigger, and disjoint from the maximal Margulis
neighbourhood of the cusp. Hence the closed geodesic is lower and lower for
the height function. We refer to the appendix for speculations about the
problem of finding a lowest closed curve, simply stating the following result
here.
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Theorem 2.2 ([17], [21, Theorem 4.7]) The map h : My1 — R is R-

analytic, and reaches its mazrimum log @ exactly on the modular hyperbolic

once-punctured torus PSLy(Z) \H3.

The derived subgroup G’ = [G,G] of a
group G is the smallest normal subgroup
H of G such that G/H is abelian. Note
that PSLy(Z)" has index 6 in PSLy(Z),
and that Myoq = PSLo(Z)'\H3 is the
hyperbolic surface obtained by gluing
isometrically opposite faces of a regular
hyperbolic hexagon with three vertices at
infinity and three vertices of angle %’T
Note that Mpyoq is also the element of
Mi,1 which has a maximal order sym-
metry group 6, and the longest shortest
curve (see for instance [35]). The dotted
line represents the boundary of the maxi-
mal Margulis neighbourhood of the cusp,
which is a circle with three self-tangent
points. The three continuous lines rep- Fig. 2: The modular torus
resent the three closed geodesics whose
heights are minimum on M,,q, hence are
equal to ha,, .-
We now consider the set Lk(e) of oriented geodesic lines starting from
the cusp e. (When we compactify M by adding a point at its end, we get a
CW-complex, and Lk(e) can be identified with the link of the added point.)
By lifting to the universal cover, this set Lk(e) identifies with the set of Ip-
orbits of oriented geodesic lines starting from £;. By taking the unique point
of intersection with Hy (resp. the point at infinity) of a geodesic line starting
from &, the set Lk(e) also identifies with I\ Hy (resp. with Ip\0M — {&}).
Since M has finite volume and only one cusp, a geodesic line starting from
e either converges to e, or accumulates inside M (see for instance [5]). We say
that the geodesic line is rational in the first case, and irrational otherwise.

The reason for this terminology is the following. Let G be a connected
semisimple algebraic group defined over Q, with R-rank and Q-rank one. Let
P be a minimal parabolic subgroup of G, defined over Q. Let G = G(R)( be
the identity component of the R-points of G, and K be a maximal compact
subgroup of G. Let P = P(R) N G. The symmetric space X = G/K, when
G is endowed with any left G-invariant and right K-invariant metric, has
pinched negative curvature. The boundary of X identifies with the projective
variety G/ P, which is defined over Q. Let &y be the trivial coset of G/P. Let
I' = G(Z)NG be the lattice of integer points in G. The orbifold I"\ X has one
and only one cusp if and only if there is one and only one I'-orbit of Q-points
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in G/P. See for instance [3], [4]. An oriented geodesic line starting from & is
rational in our sense if and only if its endpoint is a Q-point in G/P.

For instance, for the orbifold PSLy(Z)\H32, a geodesic line starting from
the cusp is rational (irrational) if and only if its lifts from & = oo (in the
upper half-plane model) end at rational (irrational) points on the real line.

In order to be able to effectively approximate irrational lines by ratio-
nal ones, we need some complexity function on the rational lines and some
uniform structure on the set Lk(e) of geodesic lines starting from the cusp.

We define the depth D(r) of a rational line r as the length of the subseg-
ment of r between the first and last intersection point of r with the level set
B~L(t), minus 2t, for any ¢ > 0. We proved in [21] that the set of depths of
rational lines is a discrete subset of R. In particular, D(r) converges to +00
as r goes out of every finite set of rational lines.

Since Lk(e) identifies with Ip\(OM — {&}), it is sufficient to define a
natural uniform structure on dM — {&}. Let a,b € OM. Their Gromov
product with respect to a base point x in M is defined as the time when the
geodesic rays starting from x and converging to a,b really start to diverge
one from the other, i.e.

1
(a,b)z = tiifrﬂoo B (d(fﬂa at) +d(z, b)) — d(ay, bt))
independently of the geodesic rays a.,b. : [0, +oo[— M converging to a,b.
The visual distance d, seen from x on OM is then defined by

0 if a=5b
du(a,b) = {e_(“’b)f otherwise .
These visual distances are natural, in the sense that every isometry ~y of M
extends to an homeomorphism of M which is an isometry between d, and
d~z. The Hamenstidt distance de, on OM — {&o}, which is invariant under
I, is defined by scaling the visual distance seen from a point converging to
&o (see [20, Appendix]):

d€0 (a’ b) = t—lé-ir-ﬂoo e_tdr(t) (a’ b)a

with a,b € OM — {&}, and 7 : [0, +oo[ — M a geodesic ray with origin on
Hj and converging to &. Note that (see [20, Appendix])

dg,(a,b) = lim e~ 3 (d(Ho,ae)+d(Ho,be)—d(as,b))

where a.,b. : R — M are the geodesic lines starting from &j, passing at time
t = 0 through Hy and converging to a,b. Taking the quotient by Ip, and
identifying I'o\(OM — {&}) with Lk(e), we get a distance d. on Lk(e), that
we also call the Hamenstidt distance on Lk(e).
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In order to interpret constants correctly, we modify a bit this distance.

For a,b € OM — {&}, let La, Ly be
the oriented geodesic lines from &, to
a,b. For r > 0, let H, be the horo-
sphere centered at a, meeting L, at
a point at signed distance — log 2r of
HoN L, along L,. Define d’50 (a,b) to
be the infimum of all » > 0 such that
H, meets L;. Note that d’50 is invari-
ant under . Taking the quotient by
Iy, and identifying I'o\(OM — {&})
with Lk(e), we get a map d. on
Lk(e) x Lk(e), that we call the cus- . . .
pidal distance on Lk(e). Fig. 3: The cuspidal distance

In constant curvature, both the Hamenstidt distance and the cuspidal
distance coincide with the induced Riemannian metric on I\ Hp, which is
flat. In general, and contrarily to the Hamenstadt distance, the cuspidal dis-
tance might not be a distance. But since there exists a constant ¢ > 0 such
that 1d. < dl, < cd, (see [21]), this doesn’t make a big difference.

Example 2.4. We summarize in the following table the values of the corre-
sponding notions that have just been introduced in our two test cases.

— 3
oneF-glllst;e‘éOlotE?old PSLo(Z\HE |, _ 2?38,%%?71)3%, 67,163
rting fom the oy | B2 €/
subset of rational lines Q/z Q(v—=d) /94
depth of % log |q|? log |q|?
cuspidal distance Euclidean distance Euclidean distance
Hurwitz constant % %, %, a5 %, %, 1,7,7,7
(see below)

Our first approximation result is the following. For M = PSLs (Z)\HD%,
it is simply the Dirichlet theorem on Diophantine approximation of a real
number by a rational one. See [40] and [41] for the extension to the case of
constant curvature.

Theorem 2.3 ([21, Theorem 1.1]) There ezxists a constant ¢ > 0 such
that for every irrational line «, there exist infinitely many rational lines r
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such that

d (r,a) < ce P,

This result allows us to define our second invariant for M.

Define the Hurwitz constant K s of M as the lower bound of all
such constants c.

The terminology again comes from the fact that the Hurwitz constant
of the modular curve M = PSLy(Z)\H3 is the classical Hurwitz constant
for the Diophantine approximation for a real number by rational ones. Few
values of the Hurwitz constant are known. For instance, it seems that the Hur-
witz constant for the Bianchi groups for d = 49,67, 163 are still unknown, as
well as the Hurwitz constants at the cusp corresponding to oo for I'(N)\H%
(which has more than one cusp if N # 1) where I'(N) = Ker(PSLy(Z) —
PSL2(Z/NZ)) is the N-th principal congruence subgroup. Note that the be-
haviour of the Hurwitz constant under covering is unknown.

There is an exact relationship between our two invariants. This formula
is due to H. Cohn [8] for M = PSLy(Z)\H 2.

Theorem 2.4 (|21, Theorem 1.2]) ﬁ = eha,

Let us give an idea of the proof (see [21, Theorem 1.2] for the complete
one). First, by definition of the cuspidal distance, an irrational line o which
has the biggest approximation constant ¢ (as in the statement of Theorem
2.3) is precisely one which asymptotically stays as far as possible from the
cusp.

Now, if 7 is a closed geodesic whose
height is almost minimal, let a be a
geodesic line starting from the cusp e
that spirals around 7. Then « is irra-
tional and, after some time, is not much
higher than 7.

Fig. 4: Spiraling geodesic
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Conversely, let « be an irrational geo-
desic line whose asymptotic height
limsup;_,, o, B(a(t)) is almost the lo-
west possible. In particular, after some
time, o goes not much higher than the
lower bound. After that time, o accu-
mulates both in space and direction,
that is in T'M. By Anosov’s closing
lemma, there will be a closed geodesic
7 contained in the e-neighbourhood
of a. In particular the height of this
closed geodesic is also not much higher

Fig. 5: Accumulating geodesic ~ than the lower bound.

Let us give a corollary of Theorem 2.4 in constant curvature, which ap-
pears to be new. Assume that M is a finite volume hyperbolic orbifold of
dimension n = 2 or 3. Identify M with I'\Hp, where I" a discrete subgroup
of PSLo(R) if n = 2 and PSLy(C) if n = 3. Write every element «y of I" as

1 (a(v) b(7)
c(y) d(v)

point in I', and assume that the quotient by the stabilizer of co in I" of the
open horoball centered at co with equation ¢t > 1, is the maximal Margulis
neighbourhood of the corresponding cusp.

>. After normalization, assume that oo is a parabolic fixed

Corollary 2.5 (|21, Theorem 1.4]) With the above notations,

1 ) [/ tr?y — 4]

— inf .
Ky vel:fiey>2 minger |e(aya™!)]

Since the set of depths of rational lines in M is a discrete subset of R,
we may define the depth counting function N.(t) as the number of rational
lines whose depth is less than ¢. If r is a rational line in M, any lift of r to
M starting from &; ends at vy for some ~ in I'. Note that by definition,
D(r) = d(Ho,vHy). The double class of v in Ip\I"/Ip is well defined, and
gives a bijection from the set of rational lines in M with the set of nontrivial
double cosets I'o\(I" — Iy)/ . Hence N(t) is the number of double classes
[v] in ITo\(I" — Ip) /I such that d(Hoy,vHp) < t.

Before giving the asymptotics of the depth counting function, we need
some definitions. The Poincaré series of a group G of isometries of M is

Pg(z,s) = Z e~ s d@, 97)

geaG

for z in M and s in R*. This series converges if s > d¢ and diverges if s < d¢
for some d¢ in [0, +00], called the critical exponent of G, which is independent
of z.
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Let 0r and dr, be the critical exponents of I" and I respectively. Note
that 0 < 0r, < 0r < 400 (see for instance [5]). For n in N, let fr,(n) be the
number of elements 7 in Iy such that d(x,va) < n, where z is any base point
in M.

If f,g are maps from N to RT, write f < g if there is a constant ¢ > 0
such that L f(n) < g(n) < cf(n) for every n in N.

If M is locally symmetric (for instance with constant curvature —1), then
we have a strict inequality 6, < 6 and fr,(n) < e’7o™. These properties
may be false in the case of variable curvature (see [12]), due to the possibly
much more complicated structure of the cusp neighbourhoods in variable
curvature.

log Ne(t
Theorem 2.6 ([2, Theorem 1.1] ) If 6, < or, then hmsupL() =
n— 400 n
or.

Under the same hypothesis, this asymptotic of the depth counting func-
tion has been improved by [9] in constant curvature and very recently by [33]
in general to N,(t) ~ ce®r™ for some constant ¢ > 0 depending on M and the
base point x.

We end with a result for the measure theoretical Diophantine approxima-
tion in negatively curved manifolds.

Let p. be the Hausdorff measure (in the Hausdorff dimension of Lk(e),
which is 0r), defined by the Hamenstddt distance d. on the set Lk(e) of
geodesic lines starting from the cusp e. For instance, in constant curvature,
e is just the Lebesgue measure on the flat manifold Lk(e) = I'v\Ho.

Let ¢ : Ry — Ry be a slowly varying map, in the sense that there exists
a constant ¢ > 0 such that, if |y — 2| < 1, then ¢(y) < c(z). For instance,
one can take ¢(t) = e~ where a > 0 is some constant.

Theorem 2.7 ([22, Theorem 1.3]) Let E, be the set of irrational lines o
in Lk(e) for which there exist infinitely many rational lines r with d.(a,r) <
Y(D(r))e P If 61y < 8r and fr,(n) < e’fo™, then p.(Ey) is zero if and
only if the integral f1+°o (t)20=%)dt converges.

This theorem is exactly Khintchine’s theorem [25] for the Diophantine
approximation of a real number by rational ones, when one takes M to be the
modular curve PSLy(Z)\H 2. It is due to Sullivan [37] in constant curvature;
see also [26].

In the next section, we will apply these theorems to get new results for
the Diophantine approximation on the Heisenberg group.
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3 Diophantine Approximation in the Heisenberg
Group

Let n > 1 be an integer. Let w be the standard symplectic form on the affine
2n-space A?", defined by

n

WX, X") =Y (wiy; — yi})

i=1

it X = (21,91, ,&n,yn) and X' = (24,9}, - ,20,y.,). The Heisenberg
group H,, , is the nilpotent connected algebraic group, defined over Q,
which is the set of points (X, ¢) in the affine (2n+1) space A*" x A, endowed
with the multiplication

(X, (X' ) =X+ X t+t +w(X,X)).

The identity element is (0, 0) and the inverse of (X, t) is (—X, —t). The space

H,, . (R) of R-points of H,, , is a simply connected nilpotent Lie group,

in which the set H,, ,(Q) of Q-points is a dense subgroup, and the set

H,, ,,(Z) a discrete subgroup. Note that the algebraic group of unipotent

upper triangular matrices is Q-isomorphic (more generally over fields of char-
lat

acteristic different from 2) to Hs by themap | 01y | — (z,y, 2t — xy).
001

If » belongs to H,, ,,(Q), define the height h(r) of r as the absolute
value of the lowest common multiple of the denominators of the components
of r. Note that if r = (£);=1..0041 with (p;,¢;) = 1 and |p;| < |gi[, then
h(r) = lem(qq,- - ,gon+1) is the (multiplicative) height of the Q-point r in
the projective variety H,, , over Q (see for instance [28, p. 52]).

The Lie group H,,,;(R) has a natural distance, which does not come
from a left-invariant Riemannian metric, but is a sub-Riemannian metric,
called the Carnot—-Carathéodory distance (see for instance [16]). This distance
dcc is constructed as follows. The tangent space T. H,,,,  (R) at the identity
contains an hyperplane Vo = {(X,0) : X € R?"}. Endow Vj with the
standard Euclidean norm. The images of Vj by the left translations define a
(nonintegrable) distribution of Euclidean hyperplanes on H,,, ,(R). For any
two points z,y in H,, (R), there exists (see for instance [16]) a C' path
from x to y which is tangent at each point to the hyperplane distribution.
The Euclidean structure of the hyperplane distribution defines a length for
each such path. The Carnot—Carathéodory distance between x and y is the
lower bound of the lengths of C! paths from z to y tangent to the hyperplane
distribution.

Our first result is analogous to Dirichlet’s theorem for the Diophantine
approximation of a real number by rational ones. After we wrote the first
version of this paper, Stéphane Fischler gave us a short elementary proof of
it, that we give in the next section.
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Theorem 3.1 There exists a constant ¢ = ¢, > 0 such that for every a in
Hopp1(R) —Hy, 1(Q), there exists infinitely many r in Hy, (Q) such that
dec(ayr) < e/h(r).

Note that a ball of small radius e centered at the origin for doc looks like
a Euclidean ball of radius € in the direction of V; and like a Euclidean ball of
radius /€ in the direction of {0} x R (see Sect. 3.3). This last fact explains
the absence of a power 2 to h(r) in the above result.

The Hausdorff dimension of the Carnot—Carathéodory distance is 2n + 2
(see for instance [16]), though its topological dimension is only 2n+1. (See for
instance [29] for the definition of the Hausdorff dimension and the Hausdorff
measure of a metric space.) Let ucc be the Hausdorff measure of the Carnot—
Carathéodory distance.

Recall that a map ¢ : Ry — R is slowly varying if there exists a constant
¢ > 0 such that, if [y — 2| < 1, then 2¢(z) < ¢(y) < cip(x). Our last result
is analogous to Khintchine’s theorem for the Diophantine approximation of
a real number by rational ones. It also follows from the work of Kleinbock—
Margulis [26], but our proof is quite different.

Theorem 3.2 Let ¢ : R — Ry be a slowly varying map. Let Ey be the
set of points a in Hy, | (R) — Hy, (Q) such that there exist infinitely
many r in Hy,  (Q) with doc(o,7) < (h(r))/h(r). Then pcc(Ey) = 0
(resp. pec(Ey) = 0) if and only if the integral f1+°°1/)(t)2"+2% converges
(resp. diverges).

3.3 The Heisenberg Group

In this subsection, we recall some properties of the Heisenberg group (see for
instance [15, Sect. 2.6]), and we restate the above two theorems in a form
which is more appropriate for our setting.

From now on, 7 is an integer at least 2. On C" !, we use the standard her-
mitian product ¢ - EI =>zZ if (= (21, ,zn—1) and ¢ = (21, - , 2, _1)-

Define the (real) Heisenberg group Hapn—1(R) as the manifold C"~! x R,
with coordinates (¢, v), endowed with the multiplication (with the conven-
tions of Kordnyi-Reimann [27], Goldman [15], and [19])

o)) =+ v+ +2Im ¢-C).

Note that Im ( - Z’ is the standard symplectic form on C"~!. There is
a factor 2 appearing here, but Hs,_1(R) is also the set of R-points of a
connected algebraic group Hso,—1 defined over Q, whose set of Q-points is
Hon-1(Q) = Q[i]*! x Q, and which is isomorphic over Q (more generally
in characteristic different from 2) to H,, ; by the map ((,v) — (¢, 3).
This map is an isometry between Hsp,—1(R) and H,,,_;(R) for the Carnot—
Carathéodory metrics (defined on Ha,—1(R) in a similar way), and changes
the heights (defined on Hs,—1(R) in a similar way) only up to a factor 2.
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The Cygan distance on Hay,—1(R) is defined as follows (see [10], [15]):

doys((¢,0), (¢ ) = (IC = [ + o — v/ [2) T .

Note that the Cygan distance on Ha,—1(R) is equivalent to the Carnot—
Caratheodory distance. Moreover, dcc is the length metric induced by dcy,
(see for instance [15, p. 161]). Let pcys be the Hausdorff measure of the
Cygan distance. To prove Theorems 3.1 and 3.2, we only have to prove the
following results.

Theorem 3.4 There exists a constant ¢ = ¢, > 0 such that for every a in
Hon—1(R) —Hop—1(Q), there exist infinitely many r in Hap—1(Q) such that
deyg(a, 1) < ¢/h(r).

Theorem 3.5 Let ¢ : R — Ry be a slowly varying map. Let Ey be the
set of points o in Hap_1(R) — Hap-1(Q) such that there exist infinitely
many 17 in Hop—1(Q) with doyg(a,r) < Y(h(r))/h(r). Then pcys(Ey) = 0
(resp. picyg(°Ey) = 0) if and only if the integral f;roo w(t)Q”% converges
(resp. diverges).

The next result gives a (probably not sharp) lower bound on the Hurwitz
constant for the Diophantine approximation in the Heisenberg group.

Theorem 3.6 The lower bound of the constants ¢ as in Theorem 8.4 is at
least \4/#5

The next result is a counting result for Q-points modulo Z-points with
bounded height.

Theorem 3.7 Let N(t) be the number of points r in Hap—1(Q)/Hapn—1(Z)
with h(r) < t. Then there exists a constant ¢ > 0 such that N(t) ~ ct*" as t
tends to +o0o.

All these results will be proven in Sect. 3.19, as an application of the
results of Sect. 2. As said in the previous subsection, here is a simple proof
of Theorem 3.4, due to Stéphane Fischler.

Let @ = ((1,C2y . Con—2,v) be an irrational point in Ha,_1(R). First
assume that v is irrational. By the classical Dirichlet theorem, there exist
infinitely many rational numbers p/q such that |v — p/q| < 1/¢*. For i =
1,...,2n — 2, let p; be the integer part of ¢¢;. Then the Cygan distance
between « and the rational point (p1/q,p2/4q,--.,P2n—2/49,p/q) is at most
(2n — 1)/q. Assume now that v = % with (p’,¢') = 1 and ¢’ > 1. By the
simultaneous approximation theorem in R?”~2, there exists infinitely many
qg € N — {0} for which there exists p; € Z, i = 1,...,2n — 1, such that
max; |(; — %| < 1/q1+ﬁ. Note that lem(q,q") < ¢'q < qHﬁ if g is
big enough. Hence the Cygan distance between a and the rational point
(p1/4,02/¢; - -, Pan—2/q,P"/q’) is at most 1/lem(q, ¢’). This proves the result.
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3.8 The complex Hyperbolic Space

In this section, we recall some properties of the complex hyperbolic n-space
H¢, and in particular the fact that its boundary OH¢ is the one-point com-
pactification of the Heisenberg group. The main reference is [15], though as
in [19], we will use a different Hermitian form, better suited for our purpose.

Let ¢ = —(20Z1 + 21Z0) + z - Z be our chosen hermitian form of signature
(n, 1), defined on C"*! = C x C x C"~!, with coordinates (29, 21, z), where
z - Z is the standard Hermitian form on C"~1.

We will use two models for H¢. The first one is the Siegel domain. It is
better suited for the understanding of the boundary with a chosen point at
infinity and is analogous to the upper half-space model for Hg. This is the
domain

HE = {(w,w) € CxC" ' : 2Re w; — |w]* >0}

endowed with the Riemannian metric

4
(2 Re w1 — |w|?)? ((

ds® = dwy — dw - @)(dw; —w - dw)+

(2 Re wy — |w]?)dw - dw)

which has constant holomorphic sectional curvature —1, hence sectional cur-
vatures between —1 and f%.

The second model is the projective model, obtained by mapping H¢ into
the complex projective space P*(C) (with its standard homogeneous coordi-
nates) by the map (wy,w) — [1,wy,w]. The image of this embedding is the
open cone defined by ¢ < 0. In particular, PU(q) acts naturally on H¢. Tt
is well known (see for instance [15]) that PU(q) is the group of orientation
preserving isometries of H¢.

The subspace of H¢ defined by the equation w = 0 is totally geodesic,
and isometric to the real hyperbolic plane with sectional curvature —1. In
particular, the map ¢ : R — H¢ defined by t — (e~%,0) is a unit speed
geodesic line. Denote by oo the point of OH¢ corresponding to the limit of
c(t) as t tends to —oo. In the projective model, oo corresponds to the point
[0,1,0].

The horospheres centered at co are

H; = {(wy,w) €CxC" ' : 2Re wy — |w|* =t}
for ¢t > 0, which bound the open horoballs
HB; = {(w1,w) €CxC" ' : 2Re wy — |w|* > t}.

The Heisenberg group acts on H¢ by

(€ ) awn, w) = (wr + T+ 5ICP = Zo,w+0).
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This action is isometric, and preserves oo and the horospheres centered at
oo. Furthermore, Hsy,—1(R) acts simply transitively on each horosphere H;
for t > 0. In particular, the unit speed geodesic lines starting from oo are the
paths

1 .
tio (070 4 SIC2 = 0,0)
for to in R and (¢,v) in C"~! x R. Hence the boundary of H is:
OHE = {(wy,w) €Cx C" ' : 2Re wy — |w|? = 0} U {c0}.

Note that the continuous extension to OH¢ of the isometric action on H ¢
of Hap—1(R) is also simply transitive on OH¢ — {oo}. In particular every
nontrivial element of Hs,—1(R) is a parabolic isometry of H¢.

Define as usual M* = M for any m X m’ complex matrix M. Let I be
the identity matrix in any dimension. We denote by

a b ~v*
X=1cdid
al A

a generic matrix in U(q). If @ is the matrix representing ¢ in the canonical
basis of C"*1, one has

d b —p*
X'=Q'X'Q=|( ¢ @ —-o
—J —y A*

The isomorphism between the Heisenberg group Ha,—1(R) and a subgroup
of PU(q) (which is the full orientation preserving isometry group of H¢) is
given by

100
(G )= | 3PP —3v1c¢
¢ 01

An element of PU(q) preserving each horosphere centered at oo is of the form

1 00
3l¢17 = v 1 ¢
AC T 04

with v € R, ¢ € C" ! and A € U(n — 1). Denote by PU(q)s the subgroup
of such elements in PU(q).

The following lemma is in [15, p. 77|, with a different Hermitian form of
signature (n, 1), but the proof is the same.
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Lemma 3.9 If 2,y are points in H{, denote by V, W points in C"*! whose
images in P*(C) correspond to x,y. Then

p2day) VP

2 q(V)q(W)

COS

where (-,-) is the hermitian bilinear form on C"! associated to q.

3.10 The Rational Lines are Q-Points

Counsider the group I' = PU(q)(Z[i]) of elements in PU(q) with coefficients
in Z[i]. Then I' is a discrete subgroup of PU(q). It is well known that I'\H ¢
has finite volume (see for instance [32, p. 214]) and, if n = 2, it has one and
only one cusp (see for instance [42]). We do not know the number of cusps if
n > 2.

The point oo in OH¢ is a parabolic point of I', since for instance the
element of PU(q) corresponding to the element (0, 2) of the Heisenberg group
is in I'. Let es be the cusp of I'\H¢ corresponding to oo (see Sect. 2 for
definitions).

Recall from Sect. 2 that the rational lines in I"\H¢ are the (orbifold)
geodesic lines starting from the cusp e, and converging to it. A geodesic line
in H¢ starting from oo is the lift of a rational line if and only if its endpoint
belongs to the orbit of co by I

Let X be an element in U(q), with the notations as above. Let 2 = (0,1, 0)
in C"*1. Since X2 = (b,d, 3), the isometry v of H¢ defined by X fixes oo if
and only if b = 0. If b # 0, then v sends the point co to the point (%, %) in
OH ¢. In particular, the orbit of co by I' is contained (except oo) in the set
of Q-points of the real affine algebraic set H ¢ — {oo}. (In fact, when I'\H ¢
has only one cusp, then I'oo is equal to the set of Q-points — see for instance
[4]; if n = 2, this also follows from an elementary but tedious argument.)

Let O be the point (0,0) in OH¢ — {oco}. The map ¢ : (¢,v) — ((,v)0 =
(3¢|? = £v,() is a diffeomorphism from Ha,—1(R) to OH ¢ — {oo} such that
¢~ (I'oo — {o0}) is contained in Hay, 1 (Q).

3.11 The Hamenstéddt Distance is a Multiple of the Cygan
Distance

In this section, we determine the maximal Margulis neighbourhood of the
cusp e of I'\H¢, and we compute the Hamenstédt distance on OH ¢ — {oo}.
(Note that the Hamenstddt distance coincides with the cuspidal distance in
HE, see [21].)

Let (0,v) be a nontrivial element in Hy,—1 (R) with smallest |v| such that
the corresponding element in PU(q) belongs to I'. Such an element exists
since the commutator subgroup of Ha,—1(R) is equal to {0} x R, and since
I' is discrete. Let I'o = I' N PU(q)o be the stabilizer of co in I.
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Using Kamiya’s discreteness criterion [24, Theorem 3.2] (or [30, Proposi-
tion 5.2]), we proved in [19, Proposition 5.7] that the horoball HB|, is pre-
cisely invariant under I'. This means that if v belongs to I", then yHB,| N
HB),| is nonempty if and only if v is in ['x.

In our situation, (0,v) corresponds to an element of I' if and only if

1 00

— ;v 1 0 | has coefficients in Z[i], that is, if and only if v is in 2Z. Hence the

0 0Ir

010
horoball HBs is precisely invariant. Let v = | —1 0 0 |, which is an element
00I
in U(q) with coefficients in Z[i]. Then ~, preserves the totally geodesic plane
P defined by the equation w = 0. Note that PN HB; is the horoball in the real
hyperbolic plane P defined by the equations w = 0 and 2 Re wy > 2, that
is Re wy; > 1. Hence y9HB2 N HBy contains the point (1,0). Therefore no
horoball strictly containing HBj is precisely invariant under I'. This implies
that I'\ HBs is the maximal Margulis neighbourhood of the cusp e, of I'\H¢.

Recall that H{ has sectional curvatures between —1 and —1. Hence, if d
is the Riemannian distance on H¢, then d’ = 1d is the Riemannian distance
on H ¢ normalized to have curvature at most —1.

Recall that (see Sect. 2) the Hamenstadt distance do, on OH ¢ — {oo} is
defined as follows. For every &, & in OH ¢ — {oo},

dOO (g, 5/) - t—lg-noo 67%(d/(H27§t)+dl(H2’6;/)7d/('£t,§;,))

where t — &, t — & are the geodesic lines with unit speed for the distance
d’, starting from oo, passing at time ¢ = 0 through the horosphere H,, and
with endpoints &, ¢’.

The following result tells us that the Hamenstidt distance coincides with
the Cygan distance (up to a multiplicative constant).

Proposition 3.12 For every &, & in OH¢ — {o0}, we have

1
ﬁd(}yg(& 5/) .
Proof. To compute do.,, we use the invariance under Ha, 1 (R) of both dis-
tances and the transitivity of the action of Hs,—1(R) on OH ¢ — {oo}. Hence
we only have to prove the result for £ = O = (0,0) and ¢ = (¢,v)O for
every ((,v) nontrivial in Hap_1(R). Recall that (see Sect. 3.8) the geodesic
line with unit speed for the distance d’, starting from oo, passing at time
t = 0 through the horosphere Hs, and with endpoint (¢,v)O is the path
ti= & = (e + 3[¢* = 5v, Q).
By Lemma 3.9, as d(&, &) tends to +o00, we have, when ¢t — 400,

€D 4o W &) _ 1{1e™,0), (L e + 5P — 5.0 ) 2
2 Q(17€72t70) q(1’672t + %|<|2 - %’U,C)

oo (ga 5/) =
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d2e + 3P + doP e

- Jo (¢l +v?).
Hence
doo (0, (¢, v)0) = lim ot Ed(EnE)
1 1 1
— E(lCI4 +0?) = %dcyg(O, (¢,0)0).
The result follows. _

3.13 The Depth is the Logarithmic Height

In this section, we compute the depth D(r) of a rational line r in I'\H¢.

Proposition 3.14 If I,y is the nontrivial double coset corresponding to
a b ~*

r, where v is the image of X = | ¢ d §* | in PU(q), then D(r) = log |b|.
af A

Proof. Since XX~ = I, we have the following set of identities

ad+be —~v*6 =1 (1a)
ab+4ba —y*y =0 (1b)
cd+de— 55 =0 (1c)
af +ba— Ay =0 (1d)
B +da— A5 =0 (1le)
af* + fa* — AA* =1 (1f)

Note that by definition of v, there exists a lift of r to H¢ starting from
oo and ending at yoo. In particular, yoo # oo, which implies that b # 0.
Recall that (see Sect. 2)

1
D(r) = d'(Ha,vHz) = §d(H27’YH2) .

The point at infinity of the horosphere vHs is yoo. We may assume, by
multiplying v on the left by an element of Ha,—1(R), that yoo = O. Indeed,
the Heisenberg group acts transitively on OH¢ — {oo} and preserves the
horosphere Hs. Furthermore, the left multiplication of X by an element of
Hopn—1(R) leaves b unchanged.

Since yoo = (%, %), we have d = 0, 8 = 0. Equation (1f) implies that A is
in U(n — 1) and (1d) implies that 6 = 0.
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10 0
By multiplying X on the left by | 01 0 |, which belongs to U(g),
00 AT

preserves Hy and does not change the value of b, we may assume that A = 1.
Note that

aby* 1 00 a+b(3[¢|? — tv) + "¢ b bCH + 7
c00 sICP—2v1¢ | = ¢ 0 0
a0 I 01 a+¢ 0 I

It follows from (1b) that ¢ = %, from (le) that v = ba, and from (1c) that
2 Re (ab) = |y|?, which implies that 2 Re (%) = |%|2
The right multiplication of X by an element of Hs,—1(R) does not change
1 00
d(Hs,vH>) nor b. Hence, multiplying X on the right by | 2[¢|> — v 1 ¢*
¢ 01
with ( = —a and v =2 Im ¢, we may assume that o =~y =0 and a = 0.
Summarizing the above computations, we may assume that - is the image
0b0
in PU(q) of % 00 |. This element preserves the nonoriented geodesic line
001
p between oo and O, as well as the totally geodesic plane P in H¢ defined
by the equation w = 0. If = (1,0) and y are the intersection points of p
with Ho and yHs respectively, then d(Hs,vH2) = d(z,y). A simple compu-
tation in the constant curvature —1 plane P shows that d(z,y) = log|b|?.
This proves the result. 0

Note that yoo is the Q-point (%, %) in the real affine algebraic set OH ¢ —
{o0}. The coefficients of § and b,d are relatively prime, since v belongs to
U(q)(Z][i]). By acting on the left by an element of I's,, we may assume that d
and the coefficients of § have absolute value at most |b|. In particular, D(r) is
then the logarithmic height of the Q-point corresponding to (£, %) in P*(C)

(see for instance [28, p. 52]).

3.15 Computations of the Critical Exponents

In this section, we compute the critical exponent § of I" and the critical
exponent dg of I, (see also [7]).
Recall that (see Sect. 2) the Poincaré series of a discrete group of isome-

tries G of H¢ is
Pq(s) = Z e—5d' (w0,970)

geaG
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where ¢ is any base point in H ¢. This series diverges for s < o and converges
for s > o for some o in [0, +0oc], which does not depend on g, and is called
the critical exponent of G. Take zg = (§,0) in what follows.

Since I'\H ¢ has finite volume, its critical exponent is equal to the Haus-
dorff dimension of OH¢ endowed with the Carnot—Carathéodory distance
(see for instance [7, Theorem 6.1]). Hence § = 2n.

Note that 'y, is commensurable with Ha,—1(Z). Indeed, I'o N Hap—1(R)
has finite index in I's, and consists of the ({,v) in Ha,—1(Z) such that v and
I¢|? belongs to 2Z. Hence I, N Hay,—1(R) has finite index in Ha,,—1(Z).

The critical exponent of I, is then the same as the critical exponent of

the series
_ d(wo,gro)\
Q(s) = Z <cosh 5
9€H 2, —1(Z)
By Lemma 3.9, we have

s

51¢I? + ’
Q(S) _ Z (‘2 |(l|)2 U‘ )
(Cv)EH2n—1(Z) 2

s

= Y (@)

(C,y)gﬂ-@n, 1 (Z)

By comparison, this sum converges if and only if the following integral con-
verges:

/ / d¢ dv - / / 22" 3dxdy
e S (TR )~ 777 Jpe Jre (T 2® +02)F
/ 22n=3dx / dy
:2v2n 3 K
R+ (1+24)32 (1+y?)>

where vy, is the area of the unit sphere in R**! and by setting v = yv/1 + 2.
The last line converges if and only if s > n. Hence g = n.

3.16 The Height of Closed Geodesics

In this section, we compute the “distance to the cusps” of the closed geodesics
in IM\H ¢. More generally, let G be a discrete nonelementary group of isome-
tries of H¢. Assume that oo is a parabolic fixed point, with G its stabilizer
in G. Assume that G\ HBs is the maximal Margulis neighbourhood of the
cusp corresponding to co.

Let 7 be a geodesic line in H¢, whose points at infinity differ from oo.
Define the height ht(7) of 7 as the maximum of 1 log % for ¢ > 0 such that 7
meets HB;. The first factor % comes from the fact that we need to normalize
so that the sectional curvature is at most —1; the second part of the formula
comes from the fact that the signed distance between H, and Hy is log £.
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An element g in PU(q) is lozodromic if it has a unique pair of fixed points
in Hg U OH ¢, that are in OH¢. The geodesic line between these points is
called the translation azis of g, and will be denoted by A,. Note that g is
loxodromic if and only if its translation length ((g) = infremy d(z,gx) is
nonzero. The isometry g preserves Ay, and acts by a translation of length
£(g) on it. The translation length is a conjugation invariant.

Lemma 3.17 For every loxodromic element g in PU(q), whose fized points
are different from oo, one has

1 sinh 49
ht(A,) = = log 2
(o) = g los 55~

where b(g) is the coefficient 1-2 of any matriz X in U(q) mapping to g in
PU(q).

Proof. By conjugating g by an element of PU(q)~, which does not change
£(g) nor |b(g)|, we may assume that the fixed points of g are O = (0,0) and
(u,0) with Re v =0 and Im u > 0.
aby*
Set X = | ¢ d §* |. By the assumptions on g, together with (1b)—(1f)
af A
in the proof of Proposition 3.14, we obtain

b#£0,c=0,a=0 AcUMn—1),6§=05=0,v=0,

Reab=0, ad =1, andu:%l.

If a = |a|e’, then d = ‘le‘ew, u = ‘;jijg” and Re be=" = 0. The element
la] be=% 0

~" of PU(q), which is the projection of X’ = | 0 |d| 0 ], fixes (0,0) and
0 0 I

(u,0). Hence 7/ is a loxodromic element with the same translation axis as 7.

/

Since y/y~! fixes the point (%,0), the isometries 7,7’ also have the same

translation length. Since 7' sends oo to (belﬂ-e,o) whose first component is
purely imaginary, it preserves the hyperbolic plane P defined by the equation

w = 0. In particular, £(y") = |log |a|?|. By replacing ~ by its inverse, we may

assume that |a| > 1. Then |a| = ¢“s” . Hence

Ll
|ul _ smh%

2 bl

An easy computation in the real hyperbolic plane P shows that ht(y) =
lu|

1 log 5. Hence the result follows. 0
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Recall from Sect. 2 that the invariant hys of M = G\H¢ is defined as

hy = inf ht(Apon-1) -
M geclzré(g»o r}?eac):( (Angn—)
Corollary 3.18 The Hurwitz constant Ky of M = G\H¢ satisfies
_1
i 1 sinh @ ’
M =5  sup T e—"
9eG i i(p)>0 \ min [b(hgh™")|

Proof. This follows from the previous lemma and from Theorem 2.4. 0

3.19 Proofs of the Results

Theorem 3.4 is a corollary of Theorem 2.3 applied to M = I'\H ¢, with the
help of the Sects. 3.10, 3.11, and 3.13.

The assertion pcyg(Ey) = 0 if and only if f;roo w(t)Q”% converges in
Theorem 3.5 is a corollary of Theorem 2.7 applied to M = '\H¢, with the
help of the Sects. 3.10, 3.11, 3.13 and 3.15. Note that pcys(Ey) > 0 implies
that poyg(°Ey) = 0, by the same argument as in [37, p. 223].

Theorem 3.6 follows from Corollary 3.18 applied to G = I', from the fact

210

that doyg = v2dwo, and the fact that the matrix [ —i 10 | is in I, has
001

coefficient 1-2 with absolute value 1 (which is the least possible since the

coefficients are in Z[i]), and has translation length 2log %

Theorem 3.7 follows from the paragraph after 2.6 with the computations
of Sect. 3.13.

We have concentrated on one particular finite volume discrete subgroup of
PU(q), but the results of Sect. 2 apply more generally to other geometrically
finite discrete subgroups of isometries of H¢ with cusps, for instance the
groups of integer points of any split Q-forms of PU(q).

Note that by a theorem of Feustel and Zink [42], if n = 2, if d is a square-
free positive integer, then the number of cusps of PU(q)(O_4) is the class
number of the imaginary quadratic fields Q(v/—¢), and in particular is 1 if
and only if d =1,2,3,7,11,19, 43,67, 163.

Note that similar results apply for the quaternionic hyperbolic space H
and the octonionic hyperbolic plane H%), the computations of the Hamenstadt
distance, of the depth and of the critical exponents being similar to what we
have done.

Acknowledgments. The authors thanks Stéphane Fischler and Michel Wald-
schmidt for numerous conversations about Diophantine approximation in the
Heisenberg group.
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