
RIGIDITY OF FLAT HOLONOMIES
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Abstract. We prove that the existence of one horosphere in the universal cover of a closed,
strictly quarter pinched, negatively curved Riemannian manifold of dimension n ≥ 3 on
which the stable holonomy along minimizing geodesics coincide with the Riemannian parallel
transport, implies that the manifold is homothetic to a real hyperbolic manifold.

0. Introduction

Mostow’s seminal rigidity theorem [15] asserts that the geometry of a closed hyperbolic
manifold of dimension greater than two is determined by its fundamental group. Inspired
by Mostow’s theorem, we undertake a study of related, yet, more general themes. In this
paper, we look at natural geometric submanifolds, the horospheres, and ask to what extent
do these determine the geometry of the whole manifold. Precisely, we are concerned with
the following general question:

Question 0.1. Does the geometry of the horospheres of a closed, negatively curved manifold
of dimension greater than two, determine the geometry of the whole manifold?

In general, there are very few answers to Question 0.1, and all of these relate the extrinsic
geometry of the horospheres to the geometry of M . For instance, by combining [4] and [5]
(see [5], Corollary 9.18) one shows that if all the horospheres have constant mean curvature,
then the underlying manifold is locally symmetric (of negative curvature). Let us recall that
the mean curvature of a hypersurface is related to the derivative of its volume element in the
normal direction to the hypersurface, and hence the mean curvature is an extrinsic quantity.
In this paper, our main hypothesis is to relax the assumption on the sectional curvature in
Mostow’s theorem and allow it to be strictly quarter negatively curved pinched. In this case
constant mean curvature of the horospheres only occur for real hyperbolic manifolds (up
to homothety). In contrast, we would like to emphasize that we only consider the intrinsic
properties of the induced metric on the horospheres.

Before stating our main theorem, let us recall a few important features of the manifolds
under consideration and results that are related to our work in this paper. Let M denote an
(n+1)-dimensional, closed, Riemannian manifold endowed with a metric of negative sectional
curvature, n ≥ 2. It follows from the Cartan-Hadamard theorem that M̃ , the universal cover
of M , is diffeomorphic to Rn+1. Once endowed with the pull-back Riemannian metric from
M , the geometric boundary ∂M̃ of M̃ , is by definition the set of equivalence classes of
geodesic rays in M̃ , where two geodesic rays are equivalent if they remain at a bounded
Hausdorff distance. We recall that, in our context, it is homeomorphic to Sn.
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Given a point, x0 ∈ M̃ , and a unit tangent vector, ṽ ∈ Tx0M̃ , we let cṽ denote the unique
geodesic ray determined by cṽ(0) = x0 and ċṽ(0) = ṽ. It is well known that the map,
ṽ ∈ Tx0M̃ 7→ [cṽ] ∈ ∂M̃ , defines a homeomorphism between the unit sphere in Tx0M̃ and
∂M̃ . Given a point ξ = [cṽ] ∈ ∂M̃ , the Busemann function Bξ(·) is then defined for all

ξ ∈ ∂M̃ and for all x ∈ M̃ , by Bξ(x) = limt→∞(d(x, cṽ(t))− d(x0, cṽ(t))).

Since M is a closed negatively curved manifold, for each ξ ∈ ∂M̃ it is known that the
Busemann function Bξ(·) is C∞-smooth. Furthermore, for any t ∈ R, the level set

Hξ(t) =
{
x ∈ M̃ ; Bξ(x) = t

}
is a smooth submanifold of M̃ which is diffeomorphic to Rn and which is called a horosphere
centred at ξ. The sublevel set

HBξ(t) =
{
x ∈ M̃ ; Bξ(x) ≤ t

}
is called a horoball. It follows that horospheres inherit a complete Riemannian metric induced
by the restriction of the metric of M̃ . For instance, if (M, g) is a real hyperbolic manifold,
every horosphere of M̃ is flat and therefore isometric to the Euclidean space Rn.

So far we defined horospheres as special submanifolds in M̃ . However, a dynamical per-
spective turns out to be important in the proof of the main theorem. Let p̃ : T 1M̃ → M̃
and p : T 1M → M denote the natural projections. The geodesic flow g̃t on T 1M̃ is
known to be an Anosov flow, that is, the tangent bundle TT 1M̃ admits a decomposition
as TT 1M̃ = RX ⊕ Ẽss ⊕ Ẽsu, where X is the vector field generating the geodesic flow and
Ẽss, Ẽsu are the strong stable and strong unstable distributions, respectively. These distri-
butions are known to be integrable, invariant under the differential dg̃t of the geodesic flow,
and to give rise to two transverse foliations of T 1M̃ , W̃ ss and W̃ su, the strong stable and
strong unstable foliations, respectively, whose leaves are smooth submanifolds. A classical
property of these foliations is that in general they are transversally Hölder with exponent
less than one, and when the sectional curvature, denoted by K is strictly 1/4-pinched (i.e.,
−4 < K ≤ −1), they are transversally C1 (see [11, page 226]), but we do not use such a
regularity.

A link between the two point of views on horospheres is the following. For ṽ ∈ T 1M̃ , the
strong stable leaf W̃ ss(ṽ) through ṽ is defined to be the set of unit vectors w̃ ∈ T 1M̃ which
are normal to the horosphere Hξ(t) and pointing inward the horoball HBξ(t) in the direction
of ξ = cṽ(+∞), with t = Bξ(p̃(ṽ)) so that Hξ(t) = p̃(W ss(ṽ)).

With this notation in place, let us now describe our main theorem and the foundational
work we build upon. In Section 2, we will recall the construction of the stable holonomy,
introduced by Kalinin-Sadovskaya, [12] and Avila-Santamaria-Viana, [3]. It is a geodesic
flow invariant family of isomorphisms Πξ

s(x, y) between the tangent spaces to Hξ(s) at any
two points x and y. This construction requires the sectional curvature of M to be strictly
1/4-pinched. To the best of our knowledge, a stable holonomy cannot be defined without
the pinching condition. On the other hand, every horosphere Hξ(s) carries the Riemannian

metric induced by the one of M̃ . In particular for every pair of sufficiently close points
x, y ∈ Hξ(s), there a unique minimizing geodesic of Hξ(s) joining them. We thus may
consider the parallel transport associated to the Levi-Civita connecion of the induced metric
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on Hξ(s), denoted by P ξ
s (x, y), between the tangent spaces to Hξ(s) at these points x and y.

As mentioned before, in the case of K ≡ −1, the induced Riemannian metric on horospheres
is flat and the stable holonomy Πξ

s(x, y) and the parallel transport P ξ
s (x, y) coincide for every

pairs of points x and y on Hξ(s). Our main result is that the converse is true among 1/4
-pinched negatively curved manifolds.

Theorem 0.2 (Main Theorem). Let M be a closed, Riemannian manifold of dimension
n ≥ 3, endowed with a strictly 1/4-pinched negatively curved sectional curvature. Assume
that there exists ξ ∈ ∂M̃ and s ∈ R such that for every pair of points x, y ∈ Hξ(s) joined by a
unique minimizing geodesic, the stable holonomy Πξ

s(x, y) is identical to the parallel transport
P ξ
s (x, y). Then (M, g) is homothetic to a real hyperbolic manifold.

As mentioned before, the restriction on the sectional curvature ensures the existence of the
stable holonomy. For Theorem 0.2 to hold, it is indeed sufficient to make the assumption for
a single horosphere in M̃ since in Proposition 1.1 we show that it implies that all horospheres
satisfy it.

In the case that dimM = 2, Theorem 0.2, may still be true. However, our proof in the
case dimM ≥ 3 does not apply since it relies on Theorems 0.3 and 0.5 which both require
our assumption on the dimension, see more details below.

Essential to the proof of our main theorem is the following deep characterization of closed,
real hyperbolic manifolds stated by Butler [6]. This result is related to the way the geometry
of horospheres evolves under the action of the geodesic flow. Butler showed, in what might
be called now as Lyapunov rigidity, that the equality of the modulus of the eigenvalues of
dgt|Ess(v) along every periodic geodesic has an important geometric consequence. Let us
recall his theorem:

Theorem 0.3 ( [6], Theorem 1.1). Let M be a closed, negatively curved manifold of dimen-
sion n ≥ 3. For a periodic orbit gt(v) of the geodesic flow on T 1M with period l(v), let
ξ1(v), . . . , ξn(v) be the complex eigenvalues of Dgl(v)(v)|Ess(v), counted with multiplicities.
Assume that |ξ1(v)| = · · · = |ξn(v)| hold for each periodic orbit gt(v), then M is homothetic
to a compact quotient of the real hyperbolic space.

We note that the assumption on dimM ≥ 3 is necessary. Indeed, let us consider a closed
surface M with a 1/4-pinched negative sectional curvature Riemannian metric g. The metric
g can be chosen to be, for example, a small perturbation of an hyperbolic metric. In this
case, the horospheres in M̃ endowed with their induced metric are complete Riemannian
lines and the assumption on the eigenvalues of Dgl(v)(v)|Ess(v) along periodic orbits gt(v)
does not provide any useful information; indeed there is a single eigenvalue and the action
of Dgt on Ess is therefore trivially conformal.

Theorem 0.2 is a consequence of Theorem 0.3, Proposition 1.1, and the following result.

Theorem 0.4. Under the assumptions of Theorem 0.2, let cṽ(t) projects to a periodic ge-
odesic cv(t) of period l(v) in M and let ξ = cṽ(+∞). Then, the complex eigenvalues of
Dgl(v)(v)|Ess(v) satisfy |ξ1(v)| = · · · = |ξn(v)|.

Let us now briefly describe the proof of Theorem 0.4. First note that the closeness of the
manifold of M is a necessary assumption as one can verify on the examples given by the
Heintze groups. Recall that a Heintze group is a solvable group GA := R nA Rn, where A
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is an n × n real matrix and R acts on Rn by x → etAx. In the case that the real parts of
the eigenvalues of A have the same sign, Heintze [9] showed the existence of left invariant
metrics on GA with negative sectional curvature. In this case, horospheres centered at a
particular point on ∂GA and endowed with the induced metric are flat (see section 1 and in
particular (1.10)). If A is a multiple of the identity matrix, GA is then homothetic to the
real hyperbolic space; furthermore, it was proved by Heintze in [8] that the Heintze groups
GA have no cocompact lattice unless they are homothetic to the hyperbolic space. Moreover,
X. Xie obtained a necessary condition for GA to be quasi-isometric to a finitely-generated
group. His result is also essential for the proof of our main Theorem:

Theorem 0.5 ( [17], Corollary 1.6). Let A be an n × n real matrix whose eigenvalues all
have positive real parts. If GA is quasi-isometric to a finitely generated group, then the real
Jordan form of A is a multiple of the identity matrix.

The main idea of the proof of Theorem 0.4 is therefore to show that for each periodic
orbit gt(v) of the geodesic flow of T 1M of period l(v), M̃ is quasi-isometric to a Heintze
group GA, where A is a matrix whose eigenvalues all have positive real parts and such that
el(v)A is conjugate to Dgl(v)(v)|Ess(v). By assumption, M is a closed manifold endowed with

a negatively curved metric. It is well known that M̃ is quasi-isometric to the fundamental
group of M which is, in particular, finitely-generated. Hence, GA turns out to be quasi-
isometric to a finitely-generated group. It now follows from the above mentioned theorem
of Xie that the real part of the eigenvalues of A coincide and therefore, the eigenvalues of
Dgl(v)(v)|Ess(v) have the same modulus.

Therefore, we are left with proving that M̃ is quasi-isometric to a Heintze group GA. This
is done as follows. Let us fix a geodesic in M̃ with an endpoint ξ ∈ ∂M̃ . The set of stable
horospheres Hξ(t) centered at ξ and the set of geodesics asymptotic to ξ define two orthogonal

foliations of M̃ . These foliations determine horospherical coordinates R ×Hξ(0) = R × Rn

on M̃ . In these coordinates, the metric of M̃ decomposes at every point (t, x) ∈ R× Rn as
an orthogonal sum

(0.6) g̃ = dt2 + ht,

where dt2 is the standard metric on R and ht is a one parameter family of flat metrics on
Hξ(0) = Rn. On the other hand, a Heintze group GA is, by definition, also diffeomorphic to
R × Rn with a metric, written similarly at every point (t, x) ∈ R × Rn, as the orthogonal
sum

(0.7) gA := dt2+ < etA·, etA· >,

where < etA·, etA· > is a one parameter family of flat metrics on Rn, with < ·, · > being
the standard scalar product on Rn. It is worth recalling that the family of flat metrics
< etA·, etA· > on the Rn factor have the same Levi-Civita connection. This implies that the
geodesic flow (s, y)→ (s+ t, y) acting on GA ≈ R×Rn commutes with the parallel transport
along the horospheres {s} × Rn.
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Turning back to M̃ ≈ R×Rn with its horospherical coordinates associated to ξ = cṽ(+∞),
where cṽ projects to a closed geodesic cv of period l(v) in M . We will prove that M̃ is quasi-
isometric to GA, for A defined by

(0.8) el(v)A = Dp̃ ◦
(
D(γ ◦ g̃l(v)(ṽ)|Ess(ṽ)

)
◦Dp̃−1,

and where γ is the element of the fundamental group of M such that Dγ(g̃l(ṽ)(ṽ)) = ṽ, by
proving that hl(v)k =< ekA·, ekA· >, for all positive integer k.

The proof of this equality reduces to a consequence of our assumptions that the parallel
transport along the horospheres commutes with the flow (s, y) → (s + t, y) acting on M̃ ≈
R×Rn. Indeed, thanks to such a commutation, the computation of hl(v)k(l(v)k, y)(X,X) for
any tangent vectorX to Rn at the point (l(v)k, y) does not depend on the point y ∈ Rn. Thus,
it can be computed at the point (l(v)k, y0), where y0 is such that (0, y0) are the coordinates of
the point x0 ∈ M̃ lying on the intersection of the geodesic cṽ with the horosphere Hξ(0) = Rn;
the relation hl(v)k(l(v)k, y0)(X,X) =< ekAX, ekAX > is then easily derived from the fact that

the flow (s, y)→ (s+ t, y) is the projection by p̃ on M̃ of the geodesic flow.

Let us conclude this quick description by briefly describing how the commutation of the
parallel transport along the horosperes with the geodesic flow is derived. To this end,
we adapt an idea due to Avila-Santamaria-Viana [3] and Kalinin-Sadovskaya [12], which
amounts to using the geodesic flow to construct a transportation along horospheres, which is
called the stable holonomy. By construction, it is invariant by the geodesic flow. It turns out
that in order to make this construction work, we need the strict 1/4-pinching assumption
on the curvature, which in turn corresponds to the notion of a bunched dynamical system
appearing in [3, 12].

The organization of the paper is as follows. In Section 1, we show that the assumption
of the main theorem on one horosphere implies that it is satisfied on all of them using the
properties of the stable foliation of T 1M and the density of each leaf. We also describe the
geometry of the Heintze groups in the same section. In Section 2, we describe the construction
of our version of the stable holonomy, adapted from Avila-Santamaria-Viana [3] and Kalinin-
Sadovskaya [12]. In this Section we also prove that this new transportation, if coincides with
the parallel transport for the induced metric on one horosphere, then it is also the case for all
horospheres. Finally, in Section 3, this new tool allows us to prove that M̃ is quasi-isometric
to the hyperbolic space, and that the derivative of the flow on the stable manifolds has
complex eigenvalues which all have the same modulus. This concludes the proof of Theorem
0.4, and therefore of Theorem 0.2.
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1. Geometry of Horospheres and the Heintze groups

In this section, we first prove Proposition 1.1 below which, among others, states the
continuity of horospheres and asserts that if one of them is flat then all horospheres are
flat. We then describe the main family of examples showing that the closeness assumption
in Theorem 0.2 is necessary. These examples, consisting of simply connected Lie groups
endowed with negatively curved left invariant metrics, (see [9], Theorem 3), are due to E.
Heintze and are called “Heintze groups”. At the end of this section we provide a proof of
the fact that for every ξ ∈ ∂M̃ , the Busemann function B(·, ξ) is smooth.

1.1. Geometry of horospheres. Let us start by recalling a few facts about the dynamical
approach describing horospheres. We first note that the strong stable and unstable distribu-
tions Ẽss, Ẽsu and their associated foliations W̃ ss and W̃ su are invariant under the action of
the fundamental group of M , hence they all project onto their natural counterparts denoted
by Ess, Esu,W ss and W su in TT 1M and T 1M , respectively. An important consequence of
the closeness of M is that each leaf of the strong stable or unstable foliations W ss and W su

is dense in T 1M (see [1], Theorem 15). An application of the dynamical interpretation is
described in the proposition below and will be important in the sequel. Given a unit tangent
vector ṽ ∈ T 1

z M̃ , we will denote by Hṽ the horosphere centered at the point cṽ(+∞) ∈ ∂M̃
and passing through the base point z of ṽ. Observe that Hṽ = Hξ(s) where ξ = cṽ(+∞)
and s = Bξ(z). This notation will make easier the formulation of the next Proposition. If
x, y ∈ Hṽ are two points such that their exists a unique geodesic of Hṽ joining x and y, we
write PHṽ(x, y) : TxHṽ → TyHṽ the parallel transport along the geodesic path between x
and y. We will also denote dHṽ the distance on Hṽ. Recall that the parallel transport is
measured with respect to the induced Riemannian metric on Hṽ.

Proposition 1.1. Let M be a closed (n+1)-dimensional Riemannian manifold with negative
sectional curvature, then the following hold.

(1) Let (ṽk)k be a sequence in T 1M̃ such that limk ṽk = ṽ. Then, Hṽk C
∞-converge to

Hṽ on compact subsets.
(2) It is equivalent that one or every horosphere in M̃ is flat.
(3) There exists a positive constant ρ > 0 such that the injectivity radius of each horo-

sphere is bounded below by ρ.
(4) Let (ṽk)k ∈ T 1

xk
M̃ such that limk ṽk = ṽ ∈ T 1

xM̃ (notice that limk xk = x). Let
Xk ∈ TxkHṽk and yk ∈ Hṽk such that limk yk = y ∈ Hṽ, limkXk = X ∈ TxHṽ and, if
dHṽ(x, y) < ρ then, limk PHṽk (xk, yk)(Xk) = PHṽ(x, y)(X).

Proof. Let us prove the first part of the Proposition. Suppose that the sequence (ṽk)k is
converging to ṽ in T 1M̃ . The set of unit vectors w̃ normal to Hṽ such that [cw̃] = [cṽ] ∈ ∂M̃
is the strong stable leaf W̃ ss(ṽ). Recall that the projection p̃ : T 1M̃ → M̃ maps the
strong stable leaf W̃ ss(ṽ) diffeomorphically onto Hṽ = p̃(W̃ ss(ṽ)). Similarly, for each k the
horosphere Hṽk is the projection of a strong stable leaf W̃ ss(ṽk), Hṽk = p̃(W̃ ss(ṽk)). Let vk
and v denote the projection under dπ̃ : T 1M̃ → T 1M of ṽk and ṽ, where π̃ : M̃ →M is the
projection. Let us consider a chart U ⊂ T 1M of the strong stable foliation W ss containing v
and let Q = U ∩W ss(v) be the plaque of the foliation W ss through v. Since U is a chart of
the foliation W ss, for k large enough, U ∩W ss(vk) 6= ∅ and the plaques Qk := U ∩W ss(vk)
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Hausdorff converge to Q. Consequently, for the lift Q̃ ⊂ T 1M̃ of Q containing ṽ, the set
p̃(Q̃) ⊂ Hṽ is the Hausdorff limit of the sequence of sets p̃(Q̃k) ⊂ Hṽk where Q̃k are lifts

of Qk containing ṽk. We will show that for all r ≥ 0, p̃(Q̃) is the limit in the Cr-topology,
r ≥ 0, of p̃(Q̃k), which will conclude the first part of the Proposition.

Let us choose a chart U small enough so that Q̃k and Q̃ project diffeomorphically onto
Qk and Q. Similarly, we can assume that the projection p : T 1M → M also maps diffeo-
morphically Qk and Q into M . Finally, if U is small enough, we have that p(Qk) and p(Q)
are isometrically covered by p̃(Q̃k) and p̃(Q̃), respectively. We can therefore work equiva-
lently with p(Qk) and p(Q) instead of p̃(Q̃k) and p̃(Q̃). Note that for any t0 > 0, the strong
stable foliation W ss of the geodesic flow gt coincide with the strong stable foliation of the
diffeomorphism gt0 , which we will denote by f . The time t0 which will be fixed later on.

We will now apply Theorem IV.1, appendix IV, page 79, in [16] to the diffeomorphism
f of T 1M , the decomposition of TT 1M = E1 ⊕ E2 with E1 := RX ⊕ Esu and E2 := Ess.
Moreover, since the geodesic flow on T 1M is an Anosov flow, we can choose t0 so that the
following hold:

(1.2) ‖Df(v)‖ ≤ λ‖v‖
for every v ∈ E2\{0} and

(1.3) ‖Df(v)‖ ≥ µ‖v‖
for every v ∈ E1\{0}, with the parameters µ = 1 and λ = e−1. Notice that in (1.2) and (1.3),
the norm is the Riemannian metric on T 1M . The theorem mentioned above, can now be
applied while asserting that the set of plaques Q of the leaves of the strong stable foliation
W ss of f , is locally a continuous family of Cr-embeddings into T 1M , for any r ≥ 0, of the
unit disk Dn in Rn. More precisely, for ε > 0, let us define

(1.4) W ss
ε (v) =

{
u ∈ T 1M | d(fn(v), fn(u)) ≤ ε, ∀n ≥ 0 , and d(fn(v), fn(u)) −→ 0

n→+∞

}
.

Let Er(Dn, T 1M) denote the space of Cr embeddings of Dn into T 1M , endowed with the
Cr topology, where Dn is the unit disk in Rn. Since f is Cr, for any r ≥ 0 the assertions
of the theorem are that for every v ∈ T 1M we can choose a neighborhood V of v such that
there exists a continuous map

(1.5) Θ : V → Er(Dn, T 1M) ,

such that Θ(w)(0) = w and Θ(w)(Dn) = W ss
ε (w), for all w ∈ V . We deduce that the

sequence of maps Θ(vk) : Dn → W ss
ε (vk) converges to the map Θ(v) : Dn → W ss

ε (v). We
may also choose V ⊂ U and ε > 0 small enough so that p maps W ss

ε (vk) diffeomorphically
into Qk for k large enough and similarly, p maps W ss

ε (v) diffeomorphically into Q. We may
also assume that Qk and Q lift diffeomorphically to Q̃k ⊂ T 1M̃ and Q̃ ⊂ T 1M̃ . We then
deduce that the sequence of diffeomorphism

(1.6) αk := π−1 ◦ p ◦Θ(vk) : Dn → p̃(Q̃k)

converges to the diffeomorphism

(1.7) α := π−1 ◦ p ◦Θ(v) : Dn → p̃(Q̃).

which proves the first part of the Proposition.
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Remark 1.8. Notice that in the above convergence, p̃(Q̃k) ⊂ Hξṽk
and p̃(Q̃) ⊂ Hξṽ contains

balls of radius ε′ := ε′(ε) > 0 centered at p̃(ṽk) and p̃(ṽ) respectively. The above convergence
therefore holds on open sets of uniform size.

We now prove the second part of the Proposition. Let us assume that Hṽ is flat for the
induced metric and consider Hw̃. Since M is a closed manifold, each leaf of the strong stable
foliation W ss, in particular W ss(v), is dense in T 1M ( [1], Theorem 15). Therefore, each
plaque Q of W ss(w) contained in a chart U ⊂ T 1M of the foliation is the Hausdorff limit of
a sequence of plaques Ql of W ss(v) in the same chart. Consequently, for the lift Q̃ ⊂ T 1M̃
containing w̃, the set p̃(Q̃) ⊂ Hw̃ is the Hausdorff limit of a sequence of sets p̃(Q̃l) ⊂ Hṽ

where Q̃l are lifts of Ql.
Let Ψ be any transversal to W ss passing through w (for example Ψ could be a neighbour-

hood of w in its weak unstable manifold), and let vl be the intersection of Ψ with the plaque
Ql ⊂ W ss(v) which approximate Q, that is vl → w when l → +∞. Applying the first part
of the proposition, the sequence Hṽl locally converges in the Cr-topology to Hw̃. To be more
precise, the metric

(π−1 ◦ p ◦Θ(w))∗(g)

is the pulled back to Dn of the metric induced by the metric g of M̃ on π−1(p(Θ(w)(Dn))) ⊂
Hw̃ and, by the first part of the proposition, we deduce that

(π−1 ◦ p ◦Θ(w))∗(g) = lim
l→∞

(π−1 ◦ p ◦Θ(vl))
∗(g)

in the Cr−1-topology for every r. By tensoriality, the curvature of (p◦Θ(w))∗(g) is the pulled
back of the intrinsic curvature of this projected horosphere (note that the curvature depends
only on the differential of p ◦Θ). Since all of these quantities depend continuously on w, it
follows that p̃(Q̃) with the induced metric is flat, just as the p̃(Q̃l) are for all l.

This concludes the second part of the Proposition.
The fourth part of the proposition follows along the same lines as above. Let ṽk ∈ T 1

xk
M̃

and ṽ ∈ T 1
xM̃ as in the statement. As above, we have convergence

(π−1 ◦ p ◦Θ(v))∗(g) = lim
k→∞

(π−1 ◦ p ◦Θ(vk))
∗(g)

in the Cr−1-topology for every r and therefore the Levi-Civita connection of (π−1 ◦ p ◦
Θ(vk))

∗(g) converges to the Levi-Civita of (π−1 ◦ p ◦ Θ(v))∗(g). In particular, for k large
enough and dHṽk (xk, yk) < ρ the unique geodesic between xk and yk converges to the unique
geodesic joining x and y and thus the corresponding parallel transport along these geodesics
converges. This concludes the proof of the fourth part of the Proposition.

Let us prove the third part of the Proposition. We argue by contradiction assuming that
there exists a sequence ṽk ∈ T 1

xk
M̃ such that the injectivity radius injHṽk

(xk) of Hṽk at

xk tends to zero. By compactness of M , we may assume, after translation by elements
of π1(M), that ṽk converges to ṽ ∈ T 1

xM̃ . As above, we have convergence of the metrics
(π−1 ◦ p ◦Θ(v))∗(g) = liml→∞(π−1 ◦ p ◦Θ(vk))

∗(g) in the Cr-topology for every r ≥ 2, hence
the injectivity radii injHṽk

(xk) of Hṽk at xk converges to the injectivity radius injHṽ(x) of Hṽ

at x. Since injHṽ(x) > 0, we get a contradiction, which concludes the proof of the third part
of the Proposition.

�
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1.2. Heintze groups. We now describe a family of examples illustrating that the compact-
ness of M is a necessary assumption in Theorem 0.2. A Heintze group is a solvable group
GA = RnARn where A is an n×n matrix whose entries are real numbers. Such a group GA

is diffeomorphic to R × Rn with a group action given by (s, y).(s′, y′) = (s + s′, y + esAy′).
In the sequel, we will use the coordinates given by the diffeomorphism ψ : R × Rn → GA

defined by ψ(s, y) := (s, esAy). When the real parts of the eigenvalues of A have the same
sign, E. Heintze showed the existence of left invariant metrics on GA with negative sectional
curvature, see [9]. When the matrix A is a multiple of the Identity, GA endowed with any
left invariant metric is homothetic to the hyperbolic space. Furthermore, a Heintze group
GA contains no cocompact lattice unless it is homothetic to the hyperbolic space, [8].

As an example, consider the n× n matrix A defined by

(1.9) A =


a1 0 . . . 0
0 a2 . . . 0
. . . . . . . . . . . .
0 0 . . . an


where a1 ≤ a2 · · · ≤ an < 0. The left invariant metric g given at (0, 0) by the standard
Euclidean scalar product dt2 + |dy1|2 + · · ·+ |dyn|2 is written in the above coordinates GA =
R× Rn as

(1.10) g = ds2 + e2a1s|dy1|2 + · · ·+ e2ans|dyn|2

and gives GA the structure of a Cartan-Hadamard manifold with pinched negative sectional
curvature satisfying −a2n ≤ K ≤ −a21. In the above coordinates and for this metric, for every
y ∈ Rn, the curves t → (t, y) are geodesics, all being asymptotic to a point ξ ∈ ∂GA when
t→ +∞. For each s ∈ R, the sets {(s, y) , y ∈ Rn} are horospheres Hξ(s) centered at ξ. For
each s, the horospheres Hξ(s) are clearly isometric to the Euclidean space Rn. However, GA

is isometric to the real hyperbolic space if and only if a1 = a2 = · · · = an and it does not
admit a compact quotient unless the ai’s coincide, as proved in [8]. This exemplifies that
having a family of Euclidean horospheres Hξ(t) centered at a given boundary point does not
characterize the real hyperbolic space.

Also note that the flow ϕt defined in the above coordinates of GA by

ϕt(s, y) := (s+ t, y)

permutes the horospheres, mapping Hξ(s) on Hξ(s+ t). Writing hs the metric induced by g
on Hξ(s) we have

hs := e2a1s|dy1|2 + · · ·+ e2ans|dyn|2

and

ϕ∗t (hs+t) = e2a1(s+t)|dy1|2 + · · ·+ e2an(s+t)|dyn|2,

hence the two metrics hs and ϕ∗t (hs+t) are linearly equivalent and therefore they share the
same Levi-Civita connexion. The flow ϕt then preserves the Levi-Civita connexions and thus
commutes with the parallel transport of the induced metrics on the Hξ(s)’s.
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1.3. Busemann function. Let M̃ be a Cartan Hadamard manifolds endowed with pinched
negative sectional curvature −a2 ≤ K ≤ −b2 < 0. The Busemann functions B(·, ξ) are C2

for every ξ ∈ ∂M̃ , [10, Proposition 3.1], and it is also known that they are C∞ in the case
that M̃ is the universal cover of a closed manifold.

For the sake of completeness, let us give here the proof of this fact. The geodesic flow g̃t
on M̃ is generated by the smooth vector field Z := d

dt |t=0
g̃t on T 1M̃ . For every ξ ∈ ∂M̃ , the

set defined by

(1.11) W̃ s(ξ) = {ṽ | cṽ(+∞) = ξ}
is a weak stable leaf of g̃t, preserved by g̃t. It is a smooth submanifold of T 1M̃ ( [16,
Theorem IV.1]) and the projection p̃ induces a diffeomorphism between W̃ξ and M̃ . For

every ṽ ∈ T 1M̃ , the vector Z(ṽ) := d
dt |t=0

(g̃t(ṽ)) is tangent to the flow direction at ṽ and the

following holds.

(1.12) Dp̃(ṽ)(Z(ṽ)) = ċṽ(0) = −∇B(p̃(ṽ), ξ).

Therefore, if we defined p̃−1(x) = ṽ ∈ W̃ξ, we get ∇B(x, ξ) = −Dp̃(p̃−1(x))(Z(p̃−1(x)) is a

smooth vector field on M̃ and therefore B(·, ξ) is smooth.
This fact will be useful in section 3, while constructing a quasi-isometry between M̃ and

GA using horospherical coordinates.

2. Stable holonomies for horospheres in negatively curved manifolds

A priori the parallel transport associated to the induced metrics on horospheres does not
commute with the action of the geodesic flow. In a sharp contrast, at the end of Subsection
1.2, we noticed that for Heintze groups it does. In this section, we will describe another
transport along horospheres, called the stable holonomy, which by construction, commutes
with the geodesic flow. A consequence of the equality of these a priori unrelated two parallel
transports is that the Levi-Civita connexions of the horospheres are flat and commute with
the geodesic flow. We will see in section 3 that when these two properties hold true on the
family of horospheres Hξ(s) , s ∈ R, for ξ ∈ ∂M̃ fixed by some element γ ∈ π1(M), then M̃
is quasi-isometric to the Heintze group GA, where A is the derivative of the Poincaré first
return map along the periodic geodesic associated to γ.

We now describe the construction of the stable holonomy due to [3] and [12]. It utilizes
in a crucial way the strict 1/4-pinching assumption on the curvature which corresponds to
the ’fiber bunched’ condition of [12]. In fact, Proposition 2.14 and Proposition 2.25 below
are a consequence of Proposition 4.2 of [12] but we will present the proof adjusted to our
particular setting in order to make the paper self contained. We conclude this section with
Proposition 2.28 and Corollary 2.29, stating that equality of the two transports on a single
horosphere implies equality on all horospheres.

Throughout this section we will work with the tangent bundle of horospheres in M̃ which
in turn, as level set of Busemann functions, are smooth submanifolds of the universal cover of
M . Keeping the notations from the introduction, let gt : T 1M → T 1M denotes the geodesic
flow on M , i.e., the projection of g̃t under the map dπ̃ : T 1M̃ → T 1M . Let us choose a point
ξ ∈ ∂M̃ . It is a well known feature of the negative curvature of M̃ , that any point in M̃
lies on a unique geodesic ray ending at ξ. Hence, the canonical projection p̃ : T 1M̃ → M̃
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induces a diffeomorphism from the set of unit vectors that are pointing in the direction of ξ
and M̃ . This subset of unit tangent vectors will be denoted by W̃ s(ξ), and is usually called
the (weak) stable manifold and the induced diffeomorphism will be denoted by p̃ξ.

With this identification, for every t ∈ R and for every ξ ∈ ∂M̃ , the action of the geodesic
flow on W̃ s(ξ) provides us with a one parameter group of diffeomorphism of M̃ ,

(2.1) ϕt,ξ = p̃ξ ◦ g̃t ◦ p̃−1ξ .

For ṽ0 ∈ T 1M̃ , let ξ = cṽ0(+∞) and assume that p̃ξ(ṽ0) = x0 with cṽ0(0) = x0. By

definition, p̃ξ maps W̃ ss(ṽ0) diffeomorphically onto the unique horosphere centered at ξ which
contains x0. If we denote this horosphere by Hξ(0), then it also follows from the definitions

that the derivative Dp̃ξ(ṽ0) maps Ẽss(ṽ0) isomorphically onto Tx0Hξ(0). Finally, we note
that the family of horospheres centered at ξ can be parametrized by the time parameter,
i.e. for s ∈ R the horosphere Hξ(s) will denote the unique horosphere in M̃ , centered at
ξ, which intersects the geodesic cṽ0 at time s. By the property of invariance of the strong
stable foliation by the geodesic flow, it follows that the diffeomorphisms ϕt,ξ permutes the
set of horospheres centred at ξ, namely, ϕt,ξHξ(s) = Hξ(s+ t).

We now turn to the main construction of this section, see [3] and [12]. The stable holonomy
which we describe below provides a geodesic flow invariant way to identify tangent spaces
at different points on any fixed horosphere. We start with the following definition, cf. [12],
definition 4.1.

Figure 2.2. Horospheres and action of ϕt = ϕt,ξ
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Definition 2.3 (Stable Holonomy for Horospheres). A stable holonomy is a family of maps
(x, y, ξ)→ Πξ

s(x, y), s ∈ R, defined on the set of points (x, y, ξ) such that x, y belong to the
horosphere Hξ(s), and such that the following properties hold:

(1) Πξ
s(x, y) is a linear map from TxHξ(s) to TyHξ(s) for every s ∈ R, x, y ∈ Hξ(s),

(2) Πξ
s(x, x) = Id and Πξ

s(x, y) = Πξ
s(z, y) ◦ Πξ

s(x, z) for every s ∈ R, x, y, z ∈ Hξ(s)

(3) Πξ
s(x, y) = Dϕ−1t,ξ (ϕt,ξ(y)) ◦ Πξ

s+t(ϕt,ξ(x), ϕt,ξ(y)) ◦Dϕt,ξ(x) for all t ∈ R, s ∈ R,
where Dϕt,ξ(z) denotes the differential of ϕt,ξ at the point z.

Notice that condition (2) tells that this stable holonomy, if it exists, is ’flat’.
Let us choose a point ξ ∈ ∂M̃ . In the sequel of this section, we will set ϕt := ϕt,ξ, t ∈ R

and p̃ξ = p̃. Recall that the induced Riemannian metric on Hξ(t) is denoted by ht, and let ∇t

denote the Levi-Civita connection associated to ht. The parallel transport with respect to
∇t, along any path joining any two points x and y in Hξ(t), is an isometry between TxHξ(t)
and TyHξ(t). The isometry a priori depends on the path. However, if x, y in Hξ(t) are at
distance less than the injectivity radius of Hξ(t), there exists a unique geodesic segment
joining x and y and we will therefore denote by

(2.4) P ξ
t (x, y)

the parallel transport along this segment.

We now turn to the main proposition of this section that will grant us the existence of
the stable holonomy along horospheres. It is a reformulation of [12, Proposition 4.2] or
of [6, Proposition 2.2]. Since we will use the construction later on, we will shortly describe
it. We first need two lemmas.

The first lemma follows from the hypotheses on the curvature of M . Let us normalize the
sectional curvature κ of M , so that the following inequalities are satisfied for some constant
1 > τ > 0,

(2.5) −4(1− τ) ≤ κ ≤ −1.

The first lemma is a consequence of this pinching condition.

Lemma 2.6. Let x, y be two points on Hξ(s) and let X be a tangent vector in TxHξ(s).
Then, for any t ≥ 0, the following estimates hold

(1) ‖Dϕt(x)(X)‖hs+t ≤ e−t‖X‖hs,
(2) ‖Dϕ−1t (x)(X)‖hs−t ≤ e(2

√
1−τ)t‖X‖hs ≤ e(2−τ)t‖X‖hs , and

(3) dhs+t(ϕt(x), ϕt(y)) ≤ e−tdhs(x, y).

Proof. The norm and the distance we use above is computed with respect to the induced
Riemannian metric on the corresponding horosphere. Recall that a stable Jacobi field Y (t)
along a geodesic ray cṽ(t), t > 0, is a bounded Jacobi field, see [10, Definition 2.1]. The
proof of these inequalities is a direct consequence of the estimate of the growth of the stable
Jacobi fields as done in [10, Theorem 2.4].

In fact, we only need to show that Dϕt(X) is a stable Jacobi field. This follows from the
Anosov property of the geodesic flow of M , see [2, Appendice 21]. Indeed, if X is a tangent
vector in TxHξ(s) at the point x, then X = Dp̃(ṽ)(V ), where V ∈ Ess(ṽ) ⊂ TṽT

1M̃ , and
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ṽ is the unit vector in TxM̃ perpendicular to Hξ(s) and pointing toward ξ. Therefore, by
applying the chain rule to Equation (2.1), and recalling that x = p̃(ṽ), we obtain that

(2.7) Dϕt(x)(X) = Dp̃(g̃t(ṽ)) ◦Dg̃t(ṽ)(V ).

Since the geodesic flow of M is Anosov and V ∈ Ess(ṽ), it follows that

(2.8) lim
t→∞
‖Dg̃t(ṽ)(V )‖ = 0,

which implies that limt→∞ ‖Dϕt(x)(X)‖ = 0. Indeed the map p̃ : T 1M̃ → M̃ is defined on
the quotient (by π1(M)) by p : T 1M → M , the compactness of M grants us that p̃ as well
as Dp̃ are bounded. Hence, it follows that Dϕt(X) is a stable Jacobi field and this concludes
the proof of the first assertion of the Lemma 2.6. The other assertions follow easily.

�

Since (M̃, g̃) covers the closed manifold (M, g), for each σ ∈ [0, 1], we are able to obtain
a uniform control on the action of ϕσ as follows. We first study the behavior of the family
of horospheres Hξ(s), s ∈ R, orthogonal to the geodesic cṽ(s) such that cṽ(+∞) = ξ. By
assertion (3) of Proposition 1.1, we will assume from now on that the injectivity radius of
every horosphere is bounded below by ρ > 0. For each x ∈ Hξ(s), we denote cx the geodesic
passing through x asymptotic to ξ, ie. cx(+∞) = cṽ(+∞) = ξ parametrized in such a way
that cx(s) = x.

Lemma 2.9. There exists a constant C > 0 such that for any s ∈ R, any σ ∈ [0, 1], any two
points x, y ∈ Hξ(s) such that dHξ(s)(x, y) < ρ, and any X ∈ TxHξ(s), the following holds.
(2.10)

‖
(
Dϕ−1σ (ϕσ(y)) ◦ P ξ

s+σ(ϕσ(x), ϕσ(y)) ◦Dϕσ(x)− P ξ
s (x, y)

)
(X)‖hs ≤ Cdhs(x, y) ‖X‖hs .

Proof. Let us first assume that X ∈ TxHξ(s) has a unit norm. Define Xσ := Dϕσ(x)X and
let c : [0, d]→ Hξ(s) be the geodesic segment of Hξ(s) between x and y, where d = dhs(x, y).
Let cσ(u) : [0, d] −→ Hξ(s+ σ), be the geodesic segment, parametrized with constant speed,
joining ϕσ(x) and ϕσ(y) which exists by Lemma 2.6, (3). Notice that also by Lemma 2.6 we
have

(2.11) e−(2−τ) ≤ |ċσ| ≤ 1.

We have,

Dϕ−1σ (ϕσ(y)) ◦ P ξ
s+σ(ϕσ(x), ϕσ(y)) ◦Dϕσ(x)− P ξ

s (x, y) =∫ d
0

d
du

(
Dϕ−1σ (cσ(u)) ◦

(
P ξ
s+σ(ϕσ(x), cσ(u)) ◦Dϕσ(x)−Dϕσ(c(u)) ◦ P ξ

s (x, c(u))
))

du.

By compactness of M and by (2.1), the norm of every covariant derivative of ϕξσ and
(ϕξσ)−1, ξ ∈ ∂M̃ and σ ∈ [0, 1] is bounded above by a constant depending on the degree of
derivation. In particular, there exists a constant C > 0 such that the integrand in the right
hand side term above is bounded by a constant C.

We deduce that

(2.12) ‖P ξ
s (x, y)(X)−Dϕ−1σ (ϕσ(y)) ◦ P ξ

s+σ(ϕσ(x), ϕσ(y)) ◦Dϕσ(x)(X)‖hs ≤ Cdhs(x, y).
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If the norm of X is not equal to 1, the desired inequality follows by simple modifications of
the proof above.

�

Remark 2.13. Notice that the constant C in the above proposition does not depend on
the horosphere Hξ(s) nor even on ξ. More precisely, in formula 2.12 the parallel transport
operators are isometries, hence their norms are bounded by one. Only the differential of φσ
matters. These maps, for σ ∈ [0, 1] are projections, by p̃ to M̃ , of the geodesic flow on T 1M̃
restricted to the submanifolds W̃ s(ξ). Now by compactness of M , T 1(M) and [0, 1], p̃ and
the geodesic flow on T 1M̃ have bounded derivatives at any order. Finally the arguments
in Subsection 1.1 show that the manifolds W̃ s(ξ) have uniformly bounded geometry at any
order with constants independent of ξ.

Notice however that independence on ξ is not really needed in our argument.

We now turn to prove the existence of a stable holonomy. For every ṽ ∈ T 1M̃ , we consider
the family of horospheres centered at ξ := cṽ(+∞), which we parametrize as Hξ(t), t ∈ R,
where the parameter t = 0 corresponds to the horosphere containing the base point of ṽ.

Proposition 2.14. Let M be a closed Riemannian manifold with pinched negative curvature
satisfying −4(1−τ) ≤ κ ≤ −1. Let ṽ be a unit vector tangent to M̃ . Let ξ = limt→+∞ cṽ(t) ∈
∂M̃ . Then,

(i) For every s ∈ R, x, y ∈ Hξ(s), there exists a linear map

Πξ
s(x, y) : TxHξ(s)→ TyHξ(s)

satisfying conditions (1), (2), (3) in Definition (2.3),
(ii) ‖Πξ

s(x, y)− P ξ
s (x, y)‖ ≤ Cdhs(x, y) for all x, y such that dhs(x, y) < ρ.

(iii) Properties (i) and (ii) uniquely determine the stable holonomy.
(iv) The stable holonomy is π1(M)-equivariant, ie for every γ ∈ π1(M), we have

Πγξ
s (γx, γy) = γ∗ ◦ Πξ

s(x, y).

Proof. The proof follows closely the methods given in [12, Proposition 4.2]. We reproduce
here only the part of the construction, modified to our setting, which we will need in the
sequel. Let us consider x, y ∈ Hξ(s) such that dHξ(s)(x, y) ≤ R, for some fixed R. For every
x ∈ Hξ(s), denote xt := ϕt(x) ∈ Hξ(s + t). By Lemma 2.6 (3), there exists t0 := t0(R) ≥ 0
such that dHξ(s+t0)(xt0 , yt0) < ρ.

Let us turn to proving assertion (i). For every t ∈ R, define

ct : [0, 1]→ Hξ(s+ t)

the geodesic segment, parametrized with constant speed, between xt and yt which is well
defined when their distance is less than ρ.

For x, y ∈ Hξ(s) we define

(2.15) Πξ
s(x, y) = lim

t→∞
dϕ−1t (yt) ◦ P ξ

t (xt, yt) ◦ dϕt(x).

Notice that the above term P ξ
t (xt, yt) in the limit is well defined for all t ≥ t0 since the

distance between xt and yt is decreasing. Let us show that the above limit exists. Define for
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j ≥ 0, x, y ∈ Hξ(s),

Πξ
s,j(x, y) := dϕ−1t0+j(yt0+j) ◦ P

ξ
s+t0+j

(xt0+j, yt0+j) ◦ dϕt0+j(x).

We have for every N ≥ 0,

(2.16) Πξ
s,N(x, y) = Πξ

s,0(x, y) +
N−1∑
j=0

(
Πξ
s,j+1(x, y)− Πξ

s,j(x, y)
)
.

Each term in the above sum is expanded as(
Πξ
s,j+1 − Πξ

s,j

)
(x, y) =

Dϕ−1t0+j(yt0+j) ◦
[
Dϕ−11 (yt0+j+1) ◦ P ξ

s+t0+j+1(xt0+j+1, yt0+j+1) ◦Dϕ1(xt0+j)− Pcj(xt0+j, yt0+j)
]
◦Dϕt0+j(x),

hence, by Lemma 2.9, we get

(2.17) ‖
(

Πξ
s,j+1 − Πξ

s,j

)
(x, y)‖ ≤ C‖Dϕ−1t0+j(yt0+j)‖‖Dϕt0+j(x)‖dhs+t0+j(xt0+j, yt0+j).

Assertion (3) of Lemma 2.6 implies that

(2.18) dht0+s+j(xt0+j, yt0+j) ≤ e−(t0+j)dhs(x, y)

and substituting back in (2.17) yield that

(2.19) ‖
(

Πξ
s,j+1 − Πξ

s,j

)
(x, y)‖ ≤ Ce−τ(t0+j)dhs(x, y).

Therefore, the limit in (2.15) exists and is well defined. The π1(M)-invariance is obvious
and proofs of the others parts of this proposition are the same as in those of Theorem 4.2
of [12].

�

Remark 2.20. In the proof of the above proposition, the following fact, which will be useful
later, was under the lines.

Claim 2.21. For every ε > 0, and d > 0, there exists N such that for every ξ ∈ ∂M̃ , every
pair of points in a horosphere Hξ such that dHξ(x, y) ≤ d, then

‖Πξ(x, y)− Πξ
N(x, y)‖ ≤ ε,

where Πξ
N(x, y) is defined in (2.16) with s = 0.

Let us prove the claim. By (2.16)

Πξ(x, y)− Πξ
N(x, y) =

∞∑
j=N

(
Πξ
j+1(x, y)− Πξ

j(x, y)
)
.

and by (2.19)

‖Πξ(x, y)− Πξ
N(x, y)‖ ≤ C

∞∑
j=N

e−τ(t0+j)dhs(x, y),

which concludes the proof of the claim since the rest of the series satisfies
∞∑
j=N

e−τ(t0+j)dhs(x, y) ≤ d

∞∑
j=N

e−jτ ≤ ε
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for N large enough.

We now wish to compare the stable holonomy with the parallel transport of the Levi-Civita
connection on horospheres. Consider two points x, y on a horosphere Hξ in M̃ centered at

ξ ∈ ∂M̃ . Assume that dHξ(x, y) < ρ is smaller than the injectivity radius of Hξ. We recall
that, by Proposition 1.1 (3), the injectivity radius of every horosphere is bounded below by a
constant ρ > 0. The stable holonomy Πξ(x, y) and the parallel transport P ξ(x, y) along the
unique geodesic segment joining x and y a priori do not coincide. We insist on the fact that
the stable holonomy is a dynamical object whereas the Levi-Civita connection is geometric.
Assuming that they coincide locally on a horosphere has the following strong implication.

Proposition 2.22. Let M be a closed Riemannian manifold with pinched negative curvature
satisfying −4(1−τ) ≤ κ ≤ −1. Let ξ be a point in ∂M̃ and x0 ∈ Hξ be a point in a horosphere
centered at ξ. Assume that for every x, y ∈ BHξ(x0,

ρ
2
), the stable holonomy Πξ(x, y) coincide

with the parallel transport P ξ(x, y) of the Levi-Civita connection of Hξ. Then the induced
metric on Hξ restricted to BHξ(x0,

ρ
2
) is flat.

Proof. Since any pair of points in BHξ(x0,
ρ
2
) are at distance less than ρ, there is a unique

geodesic segment joining them and by our coincidence assumption and assertion (2) of 2.3
it follows that

P ξ(x, y) = P ξ(z, y) ◦ P ξ(x, z).

From the classical formula of the curvature in terms of the parallel transport, see for instance
[14, Theorem 7.1], we deduce that the curvature of the induced metric of Hξ restricted to
BHξ(x0,

ρ
2
) is identically zero.

�

The goal of what follows is to show that if the stable holonomy and the parallel transport
of the Levi-Civita connection locally coincide on a given horosphere Hξ, then the same
property holds on all horospheres. To accomplish this, we need to establish the continuity
of the stable holonomy. Let ṽ be a unit vector tangent to M̃ and ṽk ∈ T 1M̃ a sequence of
unit tangent vectors such that limk ṽk = ṽ. Let ξṽ = cṽ(+∞) the associated point on ∂M̃ .
Denote by Hṽ be the horosphere centered at ξṽ passing through the base point of ṽ. Let Q̃k

and Q̃ the lifts of the plaques Qk and Q of the strong stable foliation W ss embedded in a
chart U ⊂ T 1M and containing ṽk and ṽ respectively. Recall that, from Proposition 1.1, the
sequence of diffeomorphisms

(2.23) π−1 ◦ p ◦Θ(vk) : Dn → p̃(Q̃k)

converges in the Cr-topology to

(2.24) π−1 ◦ p ◦Θ(v) : Dn → p̃(Q̃).

Proposition 2.25. Let ṽk ∈ T 1M̃ be a sequence of unit tangent vectors such that limk ṽk = ṽ.
Let x = π−1 ◦ p ◦ Θ(v)(qx), y = π−1 ◦ p ◦ Θ(v)(qy) be a pair of point in p̃(Q̃) and xk =

π−1 ◦ p ◦Θ(vk)(qxk), yk = π−1 ◦ p ◦Θ(vk)(qyk) in p̃(Q̃k). Then

lim
k

Πξṽk (xk, yk) = Πξv(x, y).
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Proof. Let us fix ε > 0. By the claim 2.21, we can choose N such that for every x, y ∈ p̃(Q̃)
and every xk, yk ∈ p̃(Q̃k), we have

(2.26) ||Πξṽ(x, y)− Πξṽ
N (x, y)|| ≤ ε

and similarly,

(2.27) ||Πξṽk (xk, yk)− Π
ξṽk
N (xk, yk)|| ≤ ε.

By the above convergence of (2.23 ) to (2.24), the points xk and yk converge to x and y and
the unit normals to p̃(Q̃k) at xk and yk converge to the unit normals to p̃(Q̃) at x and y,

respectively. Therefore the flows (ϕ
ξṽk
t )|p̃(Q̃k) converge to (ϕξṽt )|p̃(Q̃) uniformly for t ∈ [0, T ]

for every T . Now, the way Πξṽ
N (x, y) depends on ϕξṽt , t ≤ N and the fact that t0 ≤ log ρ

implies that Π
ξṽk
N (xk, yk) converges to Πξṽ

N (x, y). Therefore, there exists K > 0 such that for
all k ≥ K,

‖Πξṽ
N (x, y)− Π

ξṽk
N (xk, yk)‖ ≤ ε.

We then deduce that for N and k ≥ K,

‖Πξṽ(x, y)− Πξṽk (xk, yk)‖ ≤

‖Πξṽ(x, y)− Πξṽ
N (x, y)‖+ ‖Πξṽ

N (x, y)− Π
ξṽk
N (xk, yk)‖+ ‖Πξṽk

N (xk, yk)− Πξṽk (xk, yk)‖

thus, ‖Πξṽ(x, y)− Πξṽk (xk, yk)‖ ≤ 3ε, which concludes the proof.
�

We can now state the main result of this section.

Proposition 2.28. Let M be a closed Riemannian manifold with pinched negative curvature
satisfying −4(1 − τ) ≤ κ ≤ −1. Let ṽ be a unit tangent vector in T 1M̃ and ξṽ = cṽ(+∞)
the corresponding point in ∂M̃ . Assume that the stable holonomy Πξṽ(x, y) and the parallel
transport for the Levi-Civita connection P ξṽ(x, y) coincide on every ball of radius ρ/2 of the
horosphere Hξṽ . Then for every horosphere Hξw̃ , w̃ ∈ T 1M̃ , and every z ∈ Hξw̃ , there exists
a neighbourhood V(z) ⊂ Hξw̃ of z such that the stable holonomy Πξṽ(x, y) and the parallel
transport for the Levi-Civita connection P ξṽ(x, y) coincide for all points x, y ∈ V(z).

Proof. Suppose that Hṽ satisfies the assumption of the proposition and let us consider a
different horosphere Hw̃. We will prove that locally around p̃(w̃) on Hw̃, the stable holonomy
and the Levi-Civita parallel transport coincide. As mentioned in the proof of assertion (2)
in Proposition 1.1, each leaf of the strong stable foliation W ss ⊂ T 1M , in particular W ss(v),
is dense in T 1M , where v = dπ̃(ṽ). Moreover, thanks to (1.6) and (1.7) in Proposition 1.1,
the lift p̃(Q̃) ⊂ Hw̃ is the Cr limit of the sequence of sets p̃(Q̃l) where Q̃l are lifts of Ql.
These lifts Q̃l are subsets of translates, by elements of the fundamental group of M , of Hṽ.
By the π1(M)-equivariance of the stable holonomy (coming from Proposition 2.14) and of
the Levi-Civita connection, we get from our assumption that the stable holonomy and the
parallel transport of the Levi-Civita connection coincide on p̃(Q̃l). The proof then follows
from the continuity properties of Proposition 2.25 and Proposition 1.1 (4).

�
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Corollary 2.29. Let M be a closed Riemannian manifold with pinched negative curvature
satisfying −4(1 − τ) ≤ κ ≤ −1. If the stable holonomy and the parallel transport of the
induced Levi-Civita connection coincide on every ball of radius ρ/2 of one horosphere Hξṽ ,

then the induced metric on each horosphere of M̃ is isometric to a Euclidean metric. More-
over, for every w̃ ∈ T 1M̃ , x, y ∈ Hξw̃ we have Πξw̃

s (x, y) = P ξw̃
s (x, y), in other words, the

stable holonomy and the parallel transport associated to the Euclidean metric coincide on
every horosphere. In particular, the parallel transport associated to the Euclidean metric is
invariant by the geodeisc flow.

Proof. By the Proposition 2.28, for every horosphere Hξw̃ and x ∈ Hξw̃ , the stable holonomy
and the parallel transport associated to the Levi-Civita connexion coincide on a neighbou-
hood V(x) of x. Thanks to the proposition 2.22 applied to V(x), we deduce that the induced
metric on every horosphere has a flat Levi-Civita connexion, hence is a Euclidean metric.
This proves the first part. Let us prove the second part of the Corollary. Let us consider
x, y ∈ Hξw̃ . Choose a continuous path c : [0, 1] → Hξw̃ such that c(0) = x and c(1) = y.
There exists t0 = 0 < t1 < ... < t2k = 1 such that {V(c(t2i))}ki=0 is a finite covering of c([0, 1])
and c(t2i+1) ∈ V(c(t2i))∩V(c(t2(i+1))). Since the Levi-Civita connexion on the metric of Hξw̃

is flat we have,

P ξw̃
s (x, y) = P ξw̃

s (c(t0), c(t1)) ◦ P ξw̃
s (c(t1, c(t2)) ◦ ..... ◦ P ξw̃

s (c(t2k−1, c(t2k))

and similarly, thanks to the property (2) of the definition 2.3,

Πξw̃
s (x, y) = Πξw̃

s (c(t0), c(t1)) ◦ Πξw̃
s (c(t1, c(t2)) ◦ ..... ◦ Πξw̃

s (c(t2k−1, c(t2k)).

We then conclude that P ξw̃
s (x, y) = Πξw̃

s (x, y) since P ξw̃
s (c(tj), c(tj+1)) = Πξw̃

s (c(tj), c(tj+1)).
�

3. A quasi-isometry between M̃ and a Heintze group

In this section, the main theorem of this article, Theorem 0.2, will be proved. As we
explained in the introduction, the proof amounts to proving Theorem 0.4. Henceforth, M is
assumed to be a closed, strictly quarter-pinched, negatively curved Riemannian manifold of
dimension greater than or equal to 3. Furthermore, by Corollary 2.27 we may assume that all
the horospheres in M̃ are isometric to the Euclidean space and that the associated parallel
transport is invariant by the geodesic flow. We will therefore be able to prove below the
following. Given a geodesic cṽ(t) in M̃ which projects to a closed geodesic in M , there exists
a quasi-isometry between the universal cover M̃ of M and the Heintze group GA, where A
is the derivative of the first return Poincaré map along the closed geodesic. Theorem 0.5,
will then imply that the eigenvalues of A all have the same modulus, hence concluding the
proof of Theorem 0.4.

Let us choose a geodesic cṽ(t) in M̃ with end point ξ = cṽ(∞) ∈ ∂M̃ , which projects to a
closed geodesic in M . We consider the horosphere Hξ(0) centred at ξ and passing through

the base point x0 = cṽ(0). For each p ∈ M̃ , the geodesic c joining p and ξ intersects Hξ(0)
at a point x = c(0). The pair, (t, x) ∈ R×Hξ(0), are the horospherical coordinates of p.

Keeping the same notation as in Section 2, we recall that {ϕt}t∈R is a one parameter group
of diffeomorphisms of M̃ which sends Hξ(0) diffeomorphically onto Hξ(t) (see 2.1) and the
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above horospherical coordinates realise the following diffeomorphism Φ : R × Hξ(0) → M̃
defined by

(3.1) (t, x)→ ϕt(x), for t ∈ R and x ∈ Hξ(0).

Therefore, in horospherical coordinates, the pulled back by Φ of the metric g̃ on M̃ at (t, x)
writes as the orthogonal sum:

(3.2) Φ∗(g̃) = dt2 + ϕ∗tht(x),

where ϕ∗tht is a flat metric on Hξ(0). Note that ϕt acts by translation on geodesics, hence,
there is no effect on the dt2 factor.

As before, since the horosphere (Hξ(0), h0) is flat we will identify it with the Euclidean
space (Rn, heucl). The geodesic cṽ projects to a closed geodesic on M of period l. Let γ be
the element of the fundamental group of M with axis cṽ such that Dγ(g̃l(ṽ)) = ṽ. The map
ψ = γ ◦ ϕl is a diffeomorphism of M̃ , (see definition 3.5 below). When restricted to Hξ(0),
ψ can be considered as a diffeomorphism of Rn fixing x0, and dψ(x0) as a linear operator of
Rn which we will denote by T , see the definitions 3.5 and 3.7 below, where T = T 1. Up to
replacing T by T 2, we can assume that T is contained in a one parameter group in GL(n,R),
i.e. T = elA for some matrix A (see [7]). Indeed, replacing T with T 2 = Dψ(x0)

2, we simply
work with twice the periodic orbit of period 2l and the argument is rigorously the same. We
thus can assume from now on that T = elA. Let us consider the Heintze group GA associated
to the matrix A and recall from Section 1 that
GA = RnA Rn is the solvable group endowed with the multiplication law

(3.3) (s, x) · (t, y) = (s+ t, x+ e−sAy), for all s, t ∈ R, x, y ∈ Rn.

The group GA is diffeomorphic to R × Rn, and the tangent space at each point (s, x) of
GA splits as R× Rn. Let us consider the left invariant metric gA on GA which is defined to
be the standard Euclidean metric at (0, 0) ∈ GA, where R× {0} is orthogonal to {0} × Rn.
Since the inverse of the left multiplication is given by L(s,x)−1(t, y) = (t − s,−esAx + esAy),
an easy computation shows that the metric gA is then defined, for a vector Z = (a,X) which
is tangent to GA at an arbitrary point (s, x) ∈ GA, by

(3.4) gA(s, x)(Z,Z) = a2 + heucl(e
sAX, esAX).

We start by identifying the flat horosphere (Hξ(0), h0) with the Euclidean space (Rn, deucl).

Let us recall that cṽ is a geodesic in M̃ with ξ = cṽ(∞) ∈ ∂M̃ , which projects to a closed
geodesic in M of period l. We do not require that this geodesic is primitive; in fact, we will
later replace the corresponding element γ of the fundamental group by a large enough power
of it.

We now consider the diffeomorphism of Hξ(0) defined by

(3.5) ψ(x) = γ ◦ ϕl(x), for x ∈ Hξ(0).

For all k ≥ 1, let ψk = ψ ◦ ψ · · · ◦ ψ denote the k-th power of ψ. For x ∈ Hξ(0), we define

(3.6) Tk(x) = dψ
(
ψk−1(x)

)
,

and

(3.7) T k(x) = Tk(x) · Tk−1(x) · · ·T1(x).
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Figure 3.8. The action of ψ on horospheres.

Since γ and ϕt commute for all t ∈ R, it follows that

(3.9) ψk(x) = γk ◦ ϕkl(x) and T k(x) = Dψk(x) = Dγk ◦Dϕkl(x).

As explained at the beginning of the section, we recall that T 1(x0) = eA for A being a
(n× n)-matrix. In particular,

(3.10) T k(x0) = Dψk(x0) = Dγk ◦Dϕkl(x0) = elkA.

The main result of this section is the following:

Theorem 3.11. With the notation above, (M̃, g̃) is bi-Lipschitz diffeomorphic, hence quasi-
isometric, to (GA, gA).

Proof. In fact, we will show that there is a bi-Lipschitz diffeomorphism between GA and M̃ .
Recall that the map Φ : R×Hξ(0)→ M̃ defined by Φ(s, x) = ϕs(x) is a diffeomorphism.

By Corollary 2.29, the horosphere Hξ(0) endowed with the induced metric from M̃ is flat,
hence, R×Hξ(0) = R×Rn and therefore we can see Φ as a diffeomorphism between GA and

M̃ .

We first show that the two metrics Φ∗g̃ and gA coincide at points with coordinates (lk, y)
where k is an integer.

Lemma 3.12. For every k ∈ Z and y ∈ Rn, we have Φ∗g̃(lk, y) = gA(lk, y).

Proof. It is clear that for tangent vectors of the form Z = (a, 0), we have g̃(Z,Z) =
gA(Z,Z) = a2 at any point of coordinate (t, x). Therefore, we now focus on tangent vectors
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of the type Z = (0, X), where X ∈ Rn is a vector tangent to Hξ(0) = Rn at x. By (3.4), it
suffices to show that

(3.13) Φ∗g̃(lk, x)(Z,Z) = heucl(e
lkAX, elkAX).

In fact, it follows from (3.2) that

(3.14) Φ∗g̃(lk, x)(Z,Z) = hlk(dϕlk(X), dϕlk(X)),

where dϕlk(X) is a vector tangent to Hξ(lk) at xlk = ϕlk(x), and hlk is the flat metric of
Hξ(lk). Note that the tangent vector X can be extended to a constant vector field on Rn,
which we will still denote by X.

Recall (see Section 2 that for each integer k, P ξ
lk is the parallel transport associated to the

flat metric hlk on Hξ(lk), and that x0 = cv(0) is the unique point on Hξ(0) which lies on the
axis of γ. Let us denote by qlk the point ϕlk(x0). We thus have

(3.15) hlk(dϕlk(X), dϕlk(X)) = hlk

(
P ξ
lk(xlk, qlk)(dϕlk(X)), P ξ

lk(xlk, qlk)(dϕlk(X))
)
.

By assumption (ii) of Theorem 0.2, the parallel transport of the flat metric h0 = heucl (hlk)

coincides with the stable holonomy Πξ
0 (Πξ

lk) . In particular, the commutation property (3)
of the Definition 2.3 holds:

(3.16) dϕlk(x0) ◦ P ξ
0 (x, x0)(X) = P ξ

lk(xlk, qlk)(dϕlk(X)).

Note that (3.16) relies on the fact that the family of parallel transports of the Levi-Civita
connections coincide with the stable holonomies, hence is invariant by the geodesic flow and
that it is the only place in the proof where we use it. We now deduce from (3.16) that

(3.17) hlk(dϕlk(X), dϕlk(X)) = hlk

(
dϕlk(x0) ◦ P ξ

0 (x, x0)(X), dϕlk(x0) ◦ P ξ
0 (x, x0)(X)

)
.

Since for every k, γk is an isometry we obtain
(3.18)

hlk(dϕlk(X), dϕlk(X)) = h0

(
dγk ◦ dϕlk(x0)(P ξ

0 (x, x0)(X)), dγk ◦ dϕlk(x0)(P ξ
0 (x, x0)(X))

)
,

thus, by (3.10),

(3.19) hlk(dϕlk(X), dϕlk(X)) = h0

(
elkA(P ξ

0 (x, x0)(X)), elkA(P ξ
0 (x, x0)(X))

)
.

Since Hξ(0) with the induced metric from M̃ is identified with Rn, h0 with the standard

Euclidean metric heucl and X is a constant vector field, we have P ξ
0 (x, x0)(X) = X and

(3.20) h0

(
elkA

(
P ξ
0 (x, x0)(X)

)
, elkA

(
P ξ
0 (x, x0)(X)

))
= heucl(e

lkAX, elkAX),

which implies by (3.14) and (3.19) that

(3.21) Φ∗g̃(lk, x)(Z,Z) = heucl(e
lkAX, elkAX) = gA(lk, x)(Z,Z),

which completes the proof of Lemma 3.12.

Lemma 3.12

For t ∈ R, let k be the integer part of t/l. We now compare gA(t, x) and gA(lk, x) at any
x ∈ Rn. Let us set σ = t

l
− k with σ ∈ [0, 1[. For Z = (0, X), we have

(3.22) gA(t, x)(Z,Z) = heucl(e
tAX, etAX) = heucl(e

lσAelkAX, elσAelkAX) .
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Recall that elA = D(γ ◦ ϕl)(x0) = Dψ(x0) is a fixed n × n matrix, so that there exists a
constant C such that ‖e±lσA‖2 ≤ C for every σ ∈ [0, 1[. Therefore, we deduce from (3.22)

(3.23) C−1gA(lk, x) ≤ gA(t, x) ≤ CgA(lk, x),

for every lk ≤ t < (k + 1)l. On the other hand, we have

ht(DϕtX,DϕtX) = ht(Dϕlσ ◦DϕlkX, dϕlσ ◦DϕlkX)

and the same argument as before yields,

(3.24) C−1Φ∗g̃(lk, x) ≤ Φ∗g̃(t, x) ≤ CΦ∗g̃(lk, x) .

Then the relations (3.23), (3.24) and Lemma 3.12 conclude the proof of Theorem 3.11.

Theorem 3.11

Corollary 3.25. All the eigenvalues of T = Dψ(x0) have the same modulus.

Proof. By Theorem 3.11, (GA, gA) is quasi-isometric to (M̃, g̃). Since M is closed, (M̃, g̃) is
quasi-isometric to the finitely generated group π1(M) endowed with the word metric, which
is therefore a hyperbolic group. We thus deduce that GA is quasi-isometric to a hyperbolic
group and by the theorem 0.5, this can occur only if the real part of the complex eigenvalues
of A are equal. Recall that A has been chosen so that either T = elA or T 2 = elA, where
T = Dψ(x0). We deduce that the eigenvalues of T have the same modulus.

�

We are now in position to prove Theorem 0.4, thus, completing the proof of Theorem 0.2.

Proof of Theorem 0.4. Theorem 3.11 holds for any choice of a closed geodesic, or equivalently
of an element γ of the fundamental group of M , and so does Corollary 3.25. This implies
that for any such choice, the moduli of the complex eigenvalues of T = Dψ(x0) coincide.

Recall that

(3.26) Dψ(x0) = el(v)A = Dp̃ ◦
(
D(γ ◦ g̃l(v)(ṽ)|Ess(ṽ)

)
◦Dp̃−1,

so that Dgl(v)|Ess and Dψ(x0) are conjugate matrices, therefore we conclude that the eigen-
values of Dgl(v)|Ess have the same modulus.

�



RIGIDITY OF FLAT HOLONOMIES 23

References

[1] D. V. Anosov. Geodesic flows on closed Riemannian manifolds of negative curvature. Trudy Mat. Inst.
Steklov., 90:209, 1967.
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France

URL: http://www-fourier.ujf-grenoble.fr/~besson
Email address: g.besson@univ-grenoble-alpes.fr
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