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Abstract. We show that geometrically finite Kleinian groups are dense in the boundary of the
quasiconformal deformation space of any geometrically finite Kleinian group.

1. Introduction. In this paper we prove that geometrically finite hyperbolic
manifolds are dense in the boundary of the quasiconformal deformation space
of any geometrically finite hyperbolic 3-manifold. Our main result generalizes
the fact, established in [17], that maximal cusps are dense in the boundaries
of quasiconformal deformation spaces of hyperbolic 3-manifolds with connected
conformal boundary. Both this paper and its predecessor [17] make central use
of techniques developed by McMullen in his proof that maximal cusps are dense
in the boundary of any Bers Slice [35].

It will be convenient to formalize the statement of our main result using the
language of pared manifolds. A pared manifold (M, P) consists of a compact,
irreducible, oriented 3-manifold M and a collection P of disjoint incompressible
annuli and tori in ∂M such that:

(1) If A is an abelian subgroup of π1(M) which is not cyclic, then A is
conjugate into the fundamental group of a component of P, and

(2) every map φ : (S1 × I, S1 × ∂I) → (M, P) that is injective on the funda-
mental groups, is homotopic, as a map of pairs, into P.

If G is a torsion-free group and ρ : G → PSL2(C) is a discrete faithful
representation, then Nρ = H3/ρ(G) is a hyperbolic 3-manifold. The domain of
discontinuity Ω(ρ) of ρ(G) is the largest open subset of Ĉ on which ρ(G) acts
properly discontinuously. The quotient ∂cNρ = Ω(ρ)/ρ(G) is the conformal bound-
ary of Nρ. We will say that ρ is geometrically finite if Nρ∪∂cNρ is homeomorphic
to Mρ − Pρ, where (Mρ, Pρ) is a pared 3-manifold. (For a discussion of several
equivalent definitions of geometric finiteness, see Bowditch [10].) We say that ρ
is a maximal cusp if ρ is geometrically finite and every component of Mρ − Pρ
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is a thrice punctured sphere. (In McMullen [35] a maximal cusp in the boundary
of a Bers Slice has a different, but analogous, definition.)

A discrete faithful representation ρ : π1(M) → PSL2(C) is a geometrically
finite uniformization of the pared 3-manifold (M, P) if there exists an orientation-
preserving homeomorphism h : M − P → Nρ ∪ ∂cNρ in the homotopy class
determined by ρ. Let GF0(M, P) denote the space of (conjugacy classes of) ge-
ometrically finite uniformizations of (M, P). If P is empty, then GF0(M, ∅) is
sometimes denoted CC0(M), as in [17]. If ρ0 ∈ GF0(M, P), then GF0(M, P) is
the space of all (conjugacy classes of) representations quasiconformally conjugate
to ρ0. Thurston’s geometrization theorem (see Morgan [37] for a statement in the
language of pared manifolds) implies that GF0(M, P) is always nonempty if ∂M
is nonempty.

The space GF0(M, P) naturally sits as a subset of the space AH(π1(M),π1(P))
of all (conjugacy classes of) discrete faithful representations ρ : π1(M) →
PSL2(C) such that ρ(g) is parabolic if g is conjugate to an element of π1(P). If P
consists only of the toroidal boundary components of M, then AH(π1(M),π1(P))
is simply denoted by AH(π1(M)). One may think of AH(π1(M),π1(P)) as the
space of all (marked) hyperbolic 3-manifolds homotopy equivalent to M which
have cusps in the homotopy classes associated to components of P.

In this language our main theorem becomes:

MAIN THEOREM. Let (M, P) be a pared 3-manifold such that π1(M) is non-
abelian and ∂M − P is nonempty. Then conjugacy classes of geometrically finite
representations are dense in the boundary of GF0(M, P).

Remark. If ∂M = P, then Mostow-Prasad rigidity [39, 40] implies that
GF0(M, P) = AH(π1(M),π1(P)) consists of at most two points. If π1(M) is abelian,
all the representations in AH(π1(M),π1(P)) are elementary and the space can be
described quite explicitly.

One nearly immediate corollary of our result is that manifolds with arbitrarily
short geodesics are topologically generic in the boundary of GF0(M, P).

COROLLARY A. Let (M, P) be a pared 3-manifold with nonabelian fundamental
group such that ∂M − P is nonempty. Then the set of conjugacy classes [ρ] ∈
∂GF0(M, P) such that Nρ contains arbitrarily short geodesics is a dense Gδ subset
of ∂GF0(M, P).

Motivation. Thurston’s Ending Lamination conjecture provides a conjec-
tural classification of the representations in AH(π1(M),π1(P)) and the geometri-
cally finite representations correspond to the “rational points” in this classifica-
tion, so we may think of our result as saying that rational points are dense in the
boundary of GF0(M, P).

We illustrate this analogy with the example of the space of punctured torus
groups. In this case (M, P) = (F × I, ∂F × I) where F is a punctured torus.
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Bers’ Simultaneous Uniformization Theorem [6] implies that GF0(M, P) may be
parameterized by T (F) × T (F). The Teichmüller space T (F) of all finite area
hyperbolic structures on F may be identified with H2 and the “boundary” of
H2 is identified with R̂ = R ∪ {∞}. Minsky [36] proved that one may extend
Bers’ identification of GF0(M, P) with H2 × H2 to a one-to-one correspondence
between AH(π1(M),π1(P)) and H2 × H2 − ∆ where ∆ denotes the diagonal in
∂H2 × ∂H2. In this correspondence, a representation corresponding to a point in
H2 × H2 − ∆ is geometrically finite if and only if both of its coordinates lie in
H2 ∪ Q̂. Although this correspondence is geometrically natural, it is also known
not to be a homeomorphism (see section 12.3 of Minsky [36]).

Let GF(π1(M),π1(P)) be the space of minimally parabolic, geometrically
finite representations in AH(π1(M),π1(P)). (A representation [ρ] ∈ AH(π1(M),
π1(P)) is minimally parabolic if ρ(g) is parabolic only if g is conjugate to an
element of π1(P).) Marden [29] and Sullivan [43] proved that GF(π1(M),π1(P))
is the interior of AH(π1(M),π1(P)) as a subset of the character variety X(π1(M),
π1(P)). Yair Minsky (with coauthors Brock and Canary) has recently announced
a proof of Thurston’s Ending Lamination Conjecture for manifolds in AH(π1(M),
π1(P)) in the case that ∂M − P is incompressible. This result implies that
GF(π1(M),π1(P)) is dense in AH(π1(M),π1(P)) when ∂M − P is incompress-
ible. (Bromberg [15] and Brock-Bromberg [13] had previously established that
minimally parabolic representations in AH(π1(M),π1(P)) lie in the boundary of
GF(π1(M),π1(P)) if ∂M is incompressible and P consists only of tori.) Since
every point in GF(π1(M),π1(P)) lies in GF0(M′, P′) for some pared manifold
(M′, P′), we may combine our result with Brock, Canary and Minsky’s result to
obtain:

COROLLARY B. Let (M, P) be a pared 3-manifold such that every component
of ∂M − P is incompressible. Then conjugacy classes of geometrically finite rep-
resentations are dense in the boundary of AH(π1(M),π1(P)).

Remark. In a remark at the end of Section 3 we explain how one may use
Brock, Canary and Minsky’s result in place of our key estimate (Theorem 9.1)
to give a different proof of our Main Theorem in the case that ∂M − P has
incompressible boundary.

Acknowledgments. The authors would like to thank Ken Bromberg, Yair
Minsky and Peter Shalen for useful conversations about the subject matter of
this paper. Part of the work on this paper was done during a visit of the second
author to Caltech. He would like to deeply thank Caltech for its hospitality and
support.

2. Background. In this section we collect background results which will be
useful in the proof. We are then able to give an outline of the proof in Section 3.
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2.1. Representation spaces and their metrics. Let (M, P) be a pared 3-
manifold such that π1(M) is nonabelian. We let R(π1(M),π1(P)) denote the set
of representations ρ : π1(M) → PSL2(C) such that ρ(g) is either parabolic or the
identity element if g is conjugate to an element of π1(P). Let D(π1(M),π1(P))
be the closed subset of discrete faithful representations in R(π1(M),π1(P)). We
give both D(π1(M),π1(P)) and R(π1(M),π1(P)) the compact-open topology.

The space AH(π1(M),π1(P)) is simply the quotient of D(π1(M),π1(P)) by
PSL2(C), acting by conjugation. It sits naturally as a subset of the character vari-
ety X(π1(M)),π1(P)) which is the algebreo-geometric quotient of R(π1(M),π1(P))
by PSL2(C), see Morgan-Shalen [38] for details.

One may find a finite collection of elements of π1(M) whose squared traces
give rise to a proper embedding of AH(π1(M),π1(P)) into Cm for some m (see, for
example Proposition 2.2 in [17]). If g ∈ π1(M), let τg(ρ) denote the square of the
trace of ρ(g), then τg is a well defined continuous function on R(π1(M),π1(P)).
Since τg is invariant under conjugation, it descends to a continuous function
τ̄g : AH(π1(M),π1(P)) → C.

PROPOSITION 2.1. Let M be a compact, orientable, irreducible, atoroidal 3-
manifold whose boundary has a nontorus component. Then there exists a finite set
{a1, . . . , am} of primitive elements of π1(M) such that:

(1) if [ρ1], [ρ2] ∈ AH(π1(M)) and τ̄ai([ρ1]) = τ̄ai([ρ2]) for all i = 1, . . . , m,
then [ρ1] = [ρ2]; and

(2) given any K > 0, the set

{[ρ] ∈ AH(π1(M)) |
m∑

i=1

|τ̄ai(ρ)| ≤ K}

is compact.

If A = {a1, . . . , am} is a collection of primitive elements of π1(M) which
satisfies conditions (1) and (2) of Proposition 2.1 then we call A an allowable
collection of test elements. The map τ̄ : AH(π1(M),π1(P)) → Cm given by τ̄ (ρ) =
(τ̄a1 (ρ), . . . , τ̄am(ρ)) is a proper embedding of AH(π1(M),π1(P)) into Cm. Let dA
be the metric on AH(π1(M),π1(P)) which it inherits as a subset of Cm. Explicitly,

dA([ρ1], [ρ2]) =

√√√√
m∑

i=1

|τ̄ai([ρ1]) − τ̄ai([ρ2])|2.

2.2. Cores of 3-manifolds. If N = Hn/Γ is a hyperbolic manifold, then
the ε-thin part Nthin(ε) is the set of points in N of injectivity radius less than ε.
There exists µ > 0 (called the Margulis constant) such that if N is any hyperbolic
3-manifold and ε < µ, then any unbounded component of Nthin(ε) is the quotient
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of a horoball in H3 by a parabolic subgroup of Γ. In particular, each unbounded
component of Nthin(ε) is homeomorphic to S1 × R × (0,∞) or S1 × S1 × (0,∞).
The components homeomorphic to S1 ×R× (0,∞) are called rank one cusps and
the components homeomorphic to S1 × S1 × (0,∞) are called rank two cusps.
(See Chapter D of Benedetti-Petronio [5] for details.)

It will be useful in the proof of Proposition 6.1 to bound the growth of
injectivity radius as one travels away from a point in a cusp. Suppose that x lies
in a cusp of Nthin(µ). Then there exists a lift x̃ of x to H3 and a parabolic element
γ of Γ such that d(x̃, γ(x̃)) = 2 injN(x). One may then check (see, for example,
part (iii) of Theorem 7.35.1 of Beardon [4]) that if d(ỹ, x̃) = K, then

d(ỹ, γ(ỹ)) < sinh d(ỹ, γ(ỹ)) ≤ eK sinh (d(x̃, γ(x̃))).

Therefore, if y ∈ N, x lies in a cusp of Nthin(µ) and d(x, y) ≤ K, then

injN(y) ≤ eK

2
sinh (2 injN(x))(1)

If N = H3/Γ is a hyperbolic 3-manifold, its convex core C(N) is the quotient
of the convex hull CH(Λ(Γ)) of its limit set Λ(Γ) by Γ. The nearest point retraction
r : N → C(N) takes each point in N to the nearest point in C(N). It extends
continuously to a map r̄ : N ∪ ∂cN → C(N). If Γ is finitely generated and Λ(Γ)
does not lie in a circle in Ĉ, then r̄ is properly homotopic to a homeomorphism.
(See Epstein-Marden [19] or Thurston [44] for an extensive discussion of the
nearest point retraction and the convex core.)

Canary [16] showed that an upper bound on the length of a closed curve in
∂cN gives an upper bound on the length of the corresponding closed geodesic
in ∂C(N). (The conformal boundary ∂cN is always given its associated Poincaré
metric in this paper.) We recall, see Epstein-Marden [19], that ∂C(N) is a complete
hyperbolic surface in its intrinsic metric.

THEOREM 2.2. Let N be a hyperbolic 3-manifold with finitely generated funda-
mental group and let γ be a closed geodesic of length L in ∂cN, then

l∂C(N)(r̄(γ)∗) ≤ 45Le
L
2

where r̄ : N ∪ ∂cN → C(N) is the nearest point retraction and r̄(γ)∗ is the closed
geodesic in ∂C(N) in the homotopy class of r(γ).

If ε < µ, then we let N0
ε be obtained from N by removing the unbounded

components of its ε-thin part. Let C(N)ε = C(N)∩N0
ε and P(N)ε = C(N)∩∂N0

ε . If
N is geometrically finite and Λ(Γ) does not lie in the circle, then C(N)−C(N)ε is
homeomorphic to P(N)ε × (0,∞) (for any ε < µ) and (C(N)ε, P(N)ε) is a pared
manifold, see section 6 of Morgan [37].
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A compact core C for a manifold D will be a compact submanifold such that
the inclusion map is a homotopy equivalence. (When one is not working in the
setting of aspherical manifolds one sometimes only requires that the inclusion
map induce an isomorphism on the fundamental groups.) We say that (M, P) is
a relative compact core for N0

ε (or for C(N)ε) if M is a compact core for N0
ε (or

for C(N)ε) and M intersects each component of ∂N0
ε in a connected submanifold

which is a compact core for that component. It follows from work of McCul-
lough [34] and Kulkarni-Shalen [28] that N0

ε and C(N)ε have relative compact
cores if π1(N) is finitely generated. Moreover, if R is a compact submanifold of
∂C(N) ∩ C(N)ε, then there exists a relative compact core for C(N)ε such that
M ∩ (∂C(N) ∩ C(N)ε) = R (see McCullough [34].)

Proposition 1.3 of Bonahon [9] asserts that the ends of N0
ε are in one-to-one

correspondence with the components of ∂M − P if (M, P) is a relative compact
core for N0

ε . (Although Proposition 1.3 is stated only for the case where ∂M−P is
incompressible, the proof goes through in the same manner in the general case.)
In particular, each component of N0

ε − M is a neighborhood of exactly one end
of N0

ε and each end of N0
ε has a neighborhood of this form. An end is said to be

geometrically finite if the associated component of N0
ε −M contains a component

of N0
ε − C(Nρ). Otherwise, the end is said to be geometrically infinite. A hyper-

bolic 3-manifold N with finitely generated fundamental group is geometrically
finite if and only if all the ends of N̂0

ε are geometrically finite (see page 81 of
Bonahon [9]).

It will be useful to note that ends associated to thrice-punctured spheres in
∂M − P are geometrically finite.

LEMMA 2.3. Suppose that N is a hyperbolic 3-manifold with finitely generated
fundamental group, ε < µ, and (M, P) is a relative compact core for N0

ε . If a
component F of ∂M − P is a thrice punctured sphere, then the associated end of
N0
ε is geometrically finite.

We first recall (see Lemma 2.4 below) that a free Kleinian group generated by
two parabolic elements whose product is also parabolic is necessarily Fuchsian,
i.e., preserves a round disk in Ĉ. See, for example, Theorem IX.C.1 of Maskit
[32]. (Note that although Maskit assumes in his statement that these are the only
conjugacy classes of parabolics, this is not used in the proof.)

LEMMA 2.4. Let Γ be a Kleinian group generated by parabolic elements γ1 and
γ2 such that γ1γ2 is parabolic. Then Γ is a Fuchsian group.

Proof of Lemma 2.3. The surface F must be incompressible since each
simple closed curve in Z is homotopic to a core curve of a component of P,
and hence homotopically nontrivial in M. If N = H3/Γ, then the subgroup of Γ
associated to π1(F) is freely generated by two parabolic elements whose product
is parabolic, so the subgroup must be Fuchsian, and the end associated to F must
be geometrically finite.
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2.3. Pared manifolds and pinchable collections of curves. We recall that
(X, Y) is a 3-manifold pair if X is a 3-manifold and Y is a subsurface of ∂X. The
pair (X, Y) is said to be compact and irreducible if X is compact and irreducible.
We will say that the pair (X, Y) has relatively incompressible boundary if every
component of ∂X − Y is incompressible in X.

We say that a pared manifold (X, Y) is acylindrical if it has relatively incom-
pressible boundary and every incompressible embedded torus in X or properly
embedded incompressible annulus in X with boundary in ∂X − Y is parallel into
∂X−Y or parallel into Y . (A properly embedded surface W such that ∂W ⊂ ∂X−Y
is parallel into ∂X−Y , if there exists a subsurface W ′ of ∂X−Y such that W and
W ′ bound a region in X homeomorphic to W × I such that W is identified with
W × {0}, W ′ is identified with W × {1} and ∂W × [0, 1) ⊂ ∂X − Y . Similarly,
W is parallel into Y if there exists a component W ′ of Y which bounds a region
in X of the same form as above.)

It is a consequence of Johannson’s Classification theorem [25]—see Lemma
X.23 in Jaco [24] for a statement in language similar to ours—that any homotopy
equivalence of pairs between an acylindrical pared manifold and a compact,
irreducible manifold pair with relatively incompressible boundary is homotopic
to a homeomorphism of pairs.

THEOREM 2.5. Let (M, P) be an acylindrical pared 3-manifold and (M̂, P̂) a
manifold pair with relatively incompressible boundary. Suppose that f : (M, P) →
(M̂, P̂) is a map of pairs, f is a homotopy equivalence, and f |P : P → P̂ is a
homeomorphism, then f is homotopic to a pared homeomorphism.

We say that a pared manifold (M, P) is maximal if each component of ∂M−P
is a thrice punctured sphere. The observation that a maximal pared manifold is
acylindrical plays a key role in the proof of Proposition 8.1.

LEMMA 2.6. If (M, P) is a maximal pared manifold, then (M, P) is acylindrical.

Proof of Lemma 2.6. If (M, P) did not have relatively incompressible bound-
ary then there would be a homotopically nontrivial simple closed curve α in
∂M−P (by Dehn’s Lemma) which is homotopically trivial in M. But, since each
component of ∂M − P is a thrice punctured sphere, α must be homotopic to the
core curve of an annular component of P and hence cannot be homotopically
trivial in M.

If W is an incompressible torus in M, then π1(W) is identified with a rank two
free abelian subgroup of π1(M), so W is homotopic into a toroidal component P0

of P. Since W and P0 are both embedded, they must bound a product region, so
W is parallel to P0 (see Lemma 5.3 in Waldhausen [47]).

If W is a properly embedded incompressible annulus with boundary in ∂M−
P, then each component of ∂W is parallel to the core curve of a component of P
(since each component of ∂M − P is a thrice punctured sphere). Therefore, W is



1200 RICHARD D. CANARY AND SA’AR HERSONSKY

properly homotopic to an annular component P0 of P. It follows that the boundary
components of W bound an annulus A in ∂M and that A either contains P0 or is
disjoint from it. If A contains P0, then W is parallel to P0. If A is contained in
∂M − P, then W is parallel to a subannulus of A, which lies in ∂M − P. (Again
we are applying Lemma 5.3 in [47].)

Suppose that [ρ] ∈ GF0(M, P) and h : M −P → Nρ ∪ ∂cNρ is an orientation-
preserving homeomorphism. If C is a collection of disjoint simple closed geo-
desics in ∂cNρ, then let N (h−1(C)) be a closed regular neighborhood of h−1(C)
in ∂M − P. We say that C is pinchable if (M, P ∪ N (h−1(C))) is a pared
3-manifold.

If ρ ∈ GF0(M, P) and C = {c1, . . . , cm} is a pinchable collection of curves in
∂cNρ then each element of C is associated to the conjugacy class of a nontrivial
element of ρ(π1(M)) since each component of N (h−1(C)) is incompressible. No
two elements of C are associated to the same conjugacy class, since then there
would be an essential annulus joining distinct components of N (h−1(C)), which
would violate the assumption that (M, P∪N (h−1(C))) is a pared 3-manifold. Sim-
ilarly, no element of ρ(π1(M)) which represents a curve in C, can be conjugate
to an element of ρ(π1(P)). Since elements of ρ(π1(M)) are parabolic if and only
if they are conjugate to elements of ρ(π1(P)), this implies that each conjugacy
class associated to a curve in C consists of hyperbolic elements. Each element in
the conjugacy class determined by an element of C is primitive, since otherwise
there would be an essential annulus in (M, P ∪ N (h−1(C))) with both bound-
ary components lying in the same component of N (h−1(C)) (see, for example,
Lemma 5.1.1 in Canary-McCullough [18]).

2.4. Analysis on GF0(M, P). Let X be a finite type Riemann surface.
The Teichmüller space T (X) of all marked Riemann surfaces which are quasi-
conformally homeomorphic to X can be identified with the quotient B1(X)/Q0(X),
where B1(X) denotes the space of Beltrami differentials of L∞-norm less than 1
and Q0(X) denotes the group of all quasiconformal self-homeomorphisms of X
that are homotopic to the identity. Let ΦX : B1(X) → T (X) be the quotient map.
The tangent space to Teichmüller space at the basepoint can then be identified with
B(X)/N(X) where B(X) is the space of all Beltrami differentials and N(X) is the
space of infinitesmally trivial Beltrami differentials. Let DΦX : B(X) → TXT (X)
be the projection map. (See Gardiner [22] or Imayoshi-Taniguchi [23] for more
details on the analytic theory of Teichmüller space.)

The Teichmüller space T (X) can also be thought of as the space of pairs
(Y , f ) where Y is a Riemann surface and f : X → Y is a quasiconformal homeo-
morphism, and where two pairs (Y1, f1) and (Y2, f2) are equivalent if there exists
a conformal map g : Y1 → Y2 which is homotopic to f2 ◦ f−1

1 . The pair (Y , f )
can be identified with the equivalence class of the Beltrami differential ( fz̄/fz) dz̄

dz
of f .
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If β : [0, B] → T (X) is a differentiable path and β(t) = (Xt, gt), then for each
t ∈ [0, B] there is a projection map Φt : B1(Xt) → T (X) ∼= B1(Xt)/Q0(Xt) such
that Φt(0) = β(t). The tangent vector β′(t) then lies in DΦt(B(Xt)) which may be
identified with the tangent space to T (X) at β(t).

We note that it is well known that given any marked Riemann surface X and
a short simple closed curve C on X, one may construct a (uniformly) bounded
length path in Teichmüller space joining X to a Riemann surface Y where the
length of C has been halved. It will be important for us that one may choose the
path so that the tangent vectors are represented by Beltrami differentials supported
on the thin part.

LEMMA 2.7. (Lemma 2.1 in [17]) Let L0 > 0 be given, let X be a finite area
hyperbolic surface, and let γ be a simple closed geodesic on X of length L ≤ L0.
There exists a positive number B depending only on L0 and a path β : [0, B] →
T (X), with β(t) = (Xt, gt), such that the following conditions hold:

(1) β(0) = (X, id),

(2) for all t ∈ [0, B] we have lXt (gt(γ)) ≤ L,

(3) lXB(gB(γ)) ≤ L
2 , and

(4) β′(t) is represented, for all t, by µt ∈ B(Xt) such that ‖µt‖∞ ≤ 1 and µt

is supported on the 2L-thin part of Xt associated to the curve gt(γ).

Two representations ρ1 and ρ2 in D(π1(M),π1(P)) are said to be quasicon-
formally conjugate if there exists a quasiconformal map φ̃ : Ĉ → Ĉ such that
ρ2(g) = φ̃ρ1(g)φ̃−1 for all g ∈ π1(M). In this case, φ̃ descends to an orientation-
preserving homeomorphism φ : ∂cNρ1 → ∂cNρ2 which itself extends to a homeo-
morphism between Nρ1 ∪∂cNρ1 and Nρ2 ∪∂cNρ2 in the homotopy class determined
by ρ2 ◦ ρ−1

1 . In particular, [ρ1] ∈ GF0(M, P) if and only if [ρ2] ∈ GF0(M, P).
Let [ρ0] ∈ GF0(M, P). If [ρ] ∈ GF0(M, P), then Marden’s Isomorphism

Theorem (Theorem 8.1 in [29]) implies that there exists a quasiconformal map
φ̃ conjugating ρ0 to ρ. The pair (∂cNρ,φ) may be thought of as a point in the
Teichmüller space T (∂cNρ0 ). However, if we precompose φ by a quasiconformal
self-map ψ of ∂cNρ0 which extends to a homeomorphism of Nρ ∪ ∂cNρ0 that
is homotopic to the identity, then (∂cNρ,φ ◦ ψ) is another point in T (∂cNρ0 )
which is naturally associated to ρ. Using work of Bers, Kra and Maskit (see
Bers [7] or [18]) one may identify GF0(M, P) with T (∂cNρ0 )/Mod0(ρ0), where
Mod0(ρ0) denotes the group of quasiconformal automorphisms of ∂cNρ0 which
extend to maps of Nρ0 ∪ ∂cNρ that are homotopic to the identity. Mod0(ρ0) acts
freely and properly discontinuously on T (∂cNρ0 ), so GF0(M, P) is a manifold (see
Maskit [31]).

Since ∂cNρ0 is homeomorphic to ∂M − P we may identify T (∂cNρ0 ) with
T (∂M−P) and Mod0(ρ0) with the group Mod0(M, P) of isotopy classes of pared
homeomorphisms of (M, P) that are homotopic to the identity. For the remainder
of the paper, we will identify GF0(M, P) with T (∂M − P)/Mod0(M, P) and let
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qM : T (∂M − P) → GF0(M, P) denote the quotient map. With this identification,
if (Y , f ) ∈ T (∂M − P) and qM(Y , f ) = [ρ], then one may identify ∂cNρ with the
Riemann surface Y and f extends to a homeomorphism f̄ : M − P → Nρ ∪ ∂cNρ

such that [f̄∗] = [ρ].
If a is any element of π1(M) which is not conjugate into π1(P), then there is

a natural map ϒa : GF0(M, P) → CC0(S1 ×D2) given by ϒa([ρ]) = [ρa] where ρa

denotes the restriction of ρ to the cyclic subgroup 〈a〉 of π1(M) generated by a.
We can identify CC0(S1 ×D2) with T (T2)/Mod0(S1 ×D2). Notice that ϒa lifts to
a map ϒ̃a : T (∂M − P) → T (T2). (For our purposes, it will never matter which
lift is chosen.)

Since Mod0(M, P) and Mod0(S1 × D2) act freely, properly discontinuously
and by isometries (of the Teichmüller metrics) on T (∂M − P) and T (T2), both
GF0(M, P) and CC0(S1 × D2) inherit a quotient Teichmüller metric. If [ρ] ∈
GF0(M, P), then we may naturally identify T (∂M−P) with B1(∂cNρ)/Q0(∂cNρ).
Let

Φρ : B1(∂cNρ) → T (∂M − P)

be a projection map so that qM(Φρ(0)) = [ρ] and let Φρ = qM ◦ Φρ.
The main local estimate from the previous paper, Theorem 14.1 in [17],

asserted that, on the infinitesimal level, a deformation supported on the thin
part associated to a “short” curve on the conformal boundary ∂cNρ has a small
effect on the complex length of a moderate length element of ρ(π1(M)). One
may combine this with Lemma 2.7 to see that one may halve the length of a
short curve in the conformal boundary without appreciably changing the complex
length of a moderate length element of ρ(π1(M)). The proof carries over nearly
word for word into our slightly more general setting. We denote by l(ρ(a)) the
real translation length of ρ(a).

THEOREM 2.8. Given d0 > 0, there exists c0 > 0 and K0 > 0 with the following
properties. Suppose that (M, P) is a pared manifold, a is a primitive element in
π1(M), [ρ] ∈ GF0(M, P) and l(ρ(a)) > d0. Suppose that C is a pinchable collection
of disjoint simple closed geodesics in ∂cNρ, none of which represents ρ(a), such
that each element of C has length at most L where

L ≤ c0e−l(ρ(a)).

If µ ∈ B(∂cNρ), ‖µ‖∞ ≤ 1, and µ is supported on the union of the 2L-thin parts
associated to elements of C, then

‖Dϒa(DΦ̄ρ(µ))‖ ≤ K0L.

3. Outline of proof. The proof of the main theorem follows the same rough
outline as the proof of the main result in [17] (which was in turn similar to the
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outline of proof of the main result of McMullen [35]). However, new technical
difficulties arise since we must be able to approximate points where the limit set
is not the entire sphere.

Many of the difficulties associated with points where the limit set is not the
sphere are resolved by applying a result of Evans [20]. If {ρn} is a sequence
in D(π1(M),π1(P)) converging to a minimally parabolic representation ρ, then
Evans proved that {Ω(ρn)} converges to Ω(ρ) in the sense of Carathéodory.
So, for all large enough n, we may divide Ω(ρn) into those components ΩF(ρn)
which converge to components of Ω(ρ) and those components ΩD(ρn) which
“degenerate.” Let Dn = ΩD(ρn)/ρn(π1(M)) be the “degenerating portion” of the
conformal boundary. In section 5, we formalize this subdivision by introducing
the notation of bauble theory.

Another new tool is a topologically rigidity result, Proposition 8.1, which
asserts that a homotopy equivalence from a pared manifold (M, P) to a manifold
pair (N, Q), which is a homeomorphism on P and embeds a compact core for the
components of ∂M − P which are not pairs of pants into ∂N − Q is homotopic
to a pared homeomorphism.

In Lemma 4.2 we show that the set of minimally parabolic representations is
dense in ∂GF0(M, P). Therefore, it suffices to show that any minimally parabolic
representation in ∂GF0(M, P) may be approximated by geometrically finite rep-
resentations. Let A = {a1, . . . , am} be an allowable collection of elements and let
dA be the associated metric on AH(π1(M),π1(P)).

Let [ρ̄] be a minimally parabolic representation in ∂GF0(M, P). An observa-
tion of Bers together with Sullivan’s rigidity theorem and Lemma 2.7 allows us
to to produce a sequence {[ρn]} in GF0(M, P) converging to [ρ̄] such that there
is a sequence of pants decomposition of the degenerating portion of ∂cNρn whose
lengths converge to 0. Proposition 6.1 shows that these pants decompositions are
pinchable for all large enough n. See Lemma 7.1 for a precise statement.

In Theorem 9.1 we apply the local estimate (Theorem 2.8) to each test ele-
ment to show that given a representation [ρ] ∈ GF0(M, P) and a pinchable pants
decomposition C of a collection R of components of ∂cNρ, there exists a geo-
metrically finite representation [ρ̂] within O(L) of [ρ] (where L is the total length
of C) such that Nρ̂ ∪ ∂cNρ̂ is homeomorphic to Nρ ∪ (∂Nρ −C). In brief, Lemma
2.7 produces an infinite path β: [0,∞) → T (∂M) which begins at a lift of ρ to
T (∂M − P) and which pinches the length of the pants decomposition to 0. For
each t the tangent vector β′(t) is represented by a unit norm Beltrami differential
supported on the thin part. The local estimate, Theorem 2.8, gives that ϒai(β)
has length O(L) in CC0(S1 × D2) for each ai ∈ A which is not conjugate to an
element of π1(P). It is then easily checked that qM(β) has length O(L) in the
dA-metric on AH(π1(M),π1(P)) and hence accumulates at some conjugacy class
[ρ̂] in ∂GF0(M, P). We then check that ∂cNρ−R conformally embeds in ∂cNρ̂ and
that all components of C have become cusps. One may then apply our topologi-
cal rigidity result, Proposition 8.1, and the fact that all ends associated to thrice
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punctured sphere components are geometrically finite, to check that Nρ̂ ∪ ∂cNρ̂
is homeomorphic to Nρ ∪ (∂Nρ − C) and hence that ρ̂ is geometrically finite.
(In [17], the fact that ρ̂ was geometrically finite was a direct consequence of
a result of Keen-Maskit-Series [27] since C was a pants decomposition of the
entire conformal boundary.)

In Section 10, we apply Theorem 9.1 to each [ρn] producing a sequence of
geometrically finite representation {[ρ̂n]} in ∂GF0(M, P) which also converges
to [ρ̄]. We also prove Corollary A in this final section.

Remark. In this remark we indicate how one may replace the use of The-
orem 2.8 with an application of Brock, Canary and Minsky’s recent resolution
of the Ending Lamination Conjecture for hyperbolic 3-manifolds with relatively
incompressible boundary to give a different proof of our main theorem in this
case. We should note that our Main Theorem does not follow immediately from
the Ending Lamination Theorem, even in the case that ∂M − P is incompress-
ible, since the ending invariants vary discontinuously over AH(π1(M),π1(P)) (see
Brock [12] or Anderson-Canary-McCullough [3].) Moreover, there are substantive
technical details involved in making the outline below into a complete argument.

Let (M, P) be a pared 3-manifold such that ∂M−P is incompressible. Again,
using Lemma 4.2, it suffices to show that minimally parabolic representations
in the boundary of GF0(M, P) may be approximated by geometrically finite
representations in ∂GF0(M, P). Let ρ̄ be a minimally parabolic representation
in ∂GF0(M, P) and let {ρn} and {Cn}, be the sequences of representations in
GF0(M, P) and pinchable collections of curves on ∂cNρn produced using Lemma
2.7 and Proposition 6.1 as indicated above. For all n, let hn : M−P → Nρn∪∂cNρn

be a homeomorphism in the homotopy class determined by ρ. One may then use
Thurston’s geometrization theorem and the quasiconformal deformation theory of
geometrically finite Kleinian groups to produce a sequence of geometrically finite
representations {[ρ̂n]} in ∂GF0(M, P) such that Nρ̂n

∪ ∂cNρ̂n
is homeomorphic to

M − (P ∪ h−1
n (C)) and ∂cNρ̄ is conformally identified with a subset of ∂cNρ̂n

.
One may apply convergence results of Thurston ([45, 46]) to show that {[ρ̂n]}
converges in AH(π1(M),π1(P)) to some representation [ρ̄′]. One then shows that
the conformal boundary of ∂cNρ̄′ contains a subsurface conformal to ∂cNρ̄ (in a
manner similar to the technique used in the proof of Theorem 9.1) and applies
the continuity of Thurston’s length function (see Brock [11]) to verify that the
ending laminations of the geometrically infinite ends of (Nρ̄′)0

ε are the same as
those of (Nρ̄)0

ε . The Ending Lamination Theorem may then be used to check that
ρ̄′ = ρ̄.

4. The boundary of GF0(M, P). In this section, we show that if a pared
manifold is not maximal, then the boundary of GF0(M, P) is nonempty and con-
tains a dense set of minimally parabolic representations. (Notice that if (M, P) is
a maximal pared manifold then GF0(M, P) contains exactly one point, see Keen-
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Maskit-Series [27], so GF0(M, P) has no boundary.) The proof that the boundary
of GF0(M, P) is nonempty was provided by Peter Shalen.

LEMMA 4.1. If a pared manifold (M, P) is not maximal, then the boundary of
GF0(M, P) is nonempty.

Proof of Lemma 4.1. Let Y be the component of X(π1(M),π1(P)) which
contains GF0(M, P). Since (M, P) is not maximal, it has complex dimension at
least 1. Let g ∈ π1(M) be an element such that τ̄g is nonconstant on Y . (Such
an element must exist by Lemma 2.1.) The map τg : R(π1(M),π1(P)) → C is
algebraic, so the image of each component of R(π1(M),π1(P)) is either a single
point or the complement of finitely many points. It follows that τ̄g takes on all
but finitely many values on Y . Hence, there exists [ρ] ∈ Y such that τ̄g(ρ) is real
and lies in [0, 4), which implies that ρ(g) is elliptic. It follows that [ρ] does not
lie in GF0(M, P). Since GF0(M, P) is an open subset of Y , it must therefore have
nonempty boundary in Y , and hence in X(π1(M),π1(P)).

The proof that minimally parabolic representations are dense in ∂GF0(M, P)
is the natural generalization of the proof of the first part of Lemma 15.2 in [17].

LEMMA 4.2. Let (M, P) be a pared 3-manifold. Then minimally parabolic rep-
resentations are dense in ∂GF0(M, P).

Proof of Lemma 4.2. Recall that Sullivan [43] proved that GF0(M, P) is
the interior of its closure in AH(π1(M),π1(P)) and Kapovich (Theorem 8.44 in
[26]) proved that every point in AH(π1(M),π1(P)) is a smooth point of X =
X(π1(M),π1(P)). Let Z ⊂ X be the set of all representations in X which are
not minimally parabolic. Note that Z is a countable union of complex algebraic
subsets of X and that Z does not intersect GF0(M, P).

If [ρ0] ∈ ∂GF0(M, P) is not a limit of minimally parabolic representations
in ∂GF0(M, P), then [ρ0] has a smooth, connected open neighborhood U such
that U ∩ ∂GF0(M, P) ⊂ Z. Let X0 denotes the irreducible component of X which
contains [ρ0]. Then Z0 = Z∩X0 is a countable union of proper complex algebraic
subvarieties of X0. Since U ⊂ X0 is smooth and connected, W = U − (U ∩ Z)
is a connected, dense subset of U. Since W is connected and meets GF0(M, P)
but is disjoint from ∂GF0(M, P), it must be that W ⊂ GF0(M, P). Hence U is
contained in the closure of GF0(M, P) in X. But, since GF0(M, P) is the interior
of its closure, this implies that [ρ0] lies in the interior of GF0(M, P), which is a
contradiction.

5. Convergence results and bauble theory. In this section, we produce
a subdivision of the domains of discontinuity of Kleinian groups approximating
a minimally parabolic representation into “surviving” components and “degen-
erating” components. The key tool is a result of Evans [20] which guarantees
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that the domains of discontinuity of the approximates converge to the domain of
discontinuity of the limit.

We recall that a sequence {On} of open sets in Ĉ converges, in the sense of
Carathéodory, to an open set O if and only if:

(1) If K is a compact subset of O, then K lies in On for all sufficiently large
n, and

(2) if U is open subset of On for infinitely many n, then U ⊂ O.

THEOREM 5.1. (Evans [20]) Suppose that ρ ∈ D(π1(M),π1(P)) is minimally
parabolic, and {ρn} is a sequence in D(π1(M),π1(P)) which converges to ρ, then
{Ω(ρn)} converges to Ω(ρ) in the sense of Carathéodory.

Remark. Evans actually states this result in the case that Ω(ρ) is nonempty,
in which case he uses it to show that the convergence is actually strong. The
result is obvious in the case that Ω(ρ) is empty, since, in general, Ω(ρ) contains
the Caratheodory limit of any subsequence of {Ω(ρn)}.

We will need a refinement of Evans’ result, which shows that, given a com-
ponent ∆ of Ω(ρ), one may choose components of Ω(ρn) which converge to ∆.
Notice that ∆ need not be simply connected.

LEMMA 5.2. Suppose that ρ ∈ D(π1(M),π1(P)) is minimally parabolic and
{ρn} is a sequence in D(π1(M),π1(P)) which converges to ρ. Let ∆ be a component
of Ω(ρ) and let z ∈ ∆. Then

(1) there exists, for all sufficiently large n, a component ∆n of Ω(ρn) which
contains z, and

(2) {∆n} converges to ∆ in the sense of Carathéodory,

Proof of Lemma 5.2. The first part of the statement follows immediately
from the fact that {Ω(ρn)} converges to Ω(ρ). Moreover, there exists δ > 0,
such that, for all sufficiently large n, Ω(ρn), and hence ∆n, contains the closed
ball of radius δ about z. Therefore, any subsequence of {∆n} has a convergent
subsequence. So, it suffices to show that if a subsequence of {∆n} converges to
an open subset U of Ĉ, then U = ∆.

Since {Ω(ρn)} converges to Ω(ρ) it is clear that U ⊂ Ω(ρ). Let y be any
point in ∆. There exists a path γ ∈ ∆ joining z to y. Since {Ω(ρn)} converges
to Ω(ρ), γ lies in Ω(ρn) for all sufficiently large n, so y ∈ ∆n for all sufficiently
large n. Therefore, ∆ ⊂ U.

It remains to show that U ⊂ ∆. Let Θ be the stabilizer of ∆ in ρ(π1(M)).
Then Θ is finitely generated and ∆ is a component of Ω(Θ) (see Lemma 2 of
Ahlfors [2]). Moreover, see Theorem 3 in Maskit [30], this implies that every other
component ∆′ of Ω(Θ) is a Jordan domain whose stabilizer in Θ is a quasifuchsian
subgroup whose limit set is ∂∆′. (Recall that a finitely generated Kleinian group
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R is quasifuchsian if Λ(R) is a Jordan curve and each element of R preserves
each component of Ω(R).) If U does not equal ∆, then U contains a point y in
another component of Ω(ρ) and hence in another component ∆′ of Ω(Θ). Let
Q be the quasifuchsian stabilizer of ∆′ in Θ. Then, Marden’s Stability Theorem
(Proposition 9.1 in [29]) implies that, for all large enough n, Qn = ρn(ρ−1(Q))
is a quasifuchsian subgroup of ρn(π1(M)) such that Λ(Qn) separates z from y.
Therefore, for all large n, y does not lie in ∆n which contradicts the fact that
y ∈ U. Thus, it must be the case that U = ∆.

We can now divide up the domain of discontinuity of ρn(π1(M)), for all large
enough n, into those components which are converging to components of Ω(ρ)
and those components which are “degenerating” in the limit.

Suppose that ρ ∈ D(π1(M),π1(P)) is minimally parabolic, and {ρn} is a se-
quence in D(π1(M),π1(P)) which converges to ρ. Let {∆1, . . . , ∆m} be a maximal
collection of nonconjugate components of Ω(ρ) and let {z1, . . . , zm} be a collec-
tion of points with zs ∈ ∆s for all s. We call the pair ({∆1, . . . , ∆m}, {z1, . . . , zm}) a
bauble. By Lemma 5.2, there exists, for all s and sufficiently large n, a component
∆s

n of Ω(ρn) which contains zs. When ∆s
n exists for all s, we call ({∆1

n, . . . , ∆m
n },

{z1, . . . , zm}) an approximate bauble for ρn.
If ({∆1

n, . . . , ∆m
n }, {z1, . . . , zm}) is an approximate bauble for ρn, then let

ΩF(ρn) denote the components of Ω(ρn) which are translates of ∆s
n for some

s. If ∆ is a component of ΩF(ρn), then there exists g ∈ π1(M)) and s such
that ∆ = ρn(g)(∆s

n) and ∆ lies naturally in the sequence {ρn(g)(∆s
n)} which

converges to ρ(g)(∆s). Let ΩD(ρn) = Ω(ρn) − ΩF(ρn). Notice that ΩD(ρn) and
ΩF(ρn) are only well defined for large enough n and depend on the initial choice
of bauble. It is then natural to divide ∂cNρn into Fn = ΩF(ρn)/ρn(π1(M)) and
Dn = ΩD(ρn)/ρn(π1(M)). Although the definition of Dn and Fn depend on the
choice of bauble, we will not make this explicit in the notation. It will be impor-
tant to note that if {[ρn]} is a sequence in GF0(M, P), then, for all sufficiently
large values of n, Dn is nonempty and no component of Dn is a thrice-punctured
sphere.

LEMMA 5.3. Suppose that [ρ̄] ∈ ∂GF0(M, P) is minimally parabolic, and
{[ρn]} is a sequence in GF0(M, P) such that {ρn} converges to ρ̄. If ({∆1, . . . , ∆m},
{z1, . . . , zs}) is a bauble for ρ̄, then, for all sufficiently large values of n, Dn =
ΩD(ρn)/ρn(π1(M)) is nonempty and no component of Dn is a thrice-punctured
sphere.

Proof of Lemma 5.3. If ρ̄ were geometrically finite, then Marden’s Stability
Theorem (Proposition 9.1 in [29]) would imply that ρ̄ ∈ GF0(M, P). Therefore, ρ̄
is geometrically infinite. If ({∆1, . . . , ∆m}, {z1, . . . , zm}) is a bauble for ρ. Then,
by Lemma 5.2, there exists an approximating bauble ({∆1

n, . . . , ∆m
n }, {z1

n, . . . , zm
n })

for ρn for all sufficiently large values of n. For each n, let hn : ∂M−P → N∪∂cNρn

be a homeomorphism in the homotopy class determined by ρn.
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Fix ε such that 0 < ε < µ. Let (M̄, P̄) be a relative compact core for (Nρ̄)0
ε .

Since ρ̄ is geometrically infinite, there exists a geometrically infinite end of (Nρ̄)0
ε .

If Ω(ρ) is empty, then Dn = ∂cNρ. If Ω(ρ) is nonempty, then Evans, Corollary 7.2
in [21], showed that there exists, for all sufficiently large n, a relative compact
core (Mn, Pn) for (Nρn)0

ε and a pared homeomorphism jn : (Mn, Pn) → (M̄, P̄)
in the homotopy class determined by ρ̄ ◦ ρ−1

n . (Moreover, he shows that Nρ

is topologically tame under these same assumptions.) Since ρn is geometrically
finite, this implies that there are at least m+1 components of ∂cNρn . Since there are
at most m components of Fn = ∂cNρn −Dn, there must be at least one component
of Dn for all sufficiently large n.

Suppose that Dn contains a thrice-punctured sphere component for infinitely
many values of n. Then there exists a thrice-punctured sphere component Z of
∂M − P such that hn(Z) lies in Dn for infinitely many values of n. We pass to
a subsequence, again called {ρn}, such that hn(Z) ⊂ Dn for all n. Let H be a
subgroup of π1(M) conjugate to π1(Z). Then, by Lemma 2.4, ρn(H) is Fuchsian
for all n and ρ̄(H) is Fuchsian. Let ∆n be the component of Ω(ρn(H)) which lies in
ΩD(ρn). Then, {∆n} has a subsequence converging to a component ∆ of Ω(ρ̄(H)).
Since {Ω(ρn)} converges to Ω(ρ̄), ∆ lies in Ω(ρ̄). Therefore, ∆n ⊂ ΩF(ρn) for
infinitely many values of n, contradicting our assumption that ∆n ⊂ ΩD(ρn) for
all n. Therefore, for all sufficiently large values of n, Dn does not contain any
thrice-punctured sphere components.

6. Finding pinchable collections. In this section we observe that bounded
length pants decompositions Cn of the degenerating portion Dn of ∂cNρn are even-
tually pinchable. Essentially, we must show that the curves in Cn are associated to
distinct primitive hyperbolic elements of ρn(π1(M)). The proof is a generalization
of the proof of Proposition 3.1 in [17].

PROPOSITION 6.1. Suppose that [ρ̄] ∈ ∂GF0(M, P) is minimally parabolic, K >
0, and ({∆1, . . . , ∆m}, {z1, . . . , zm}) is a bauble for ρ̄. If {[ρn]} is a sequence in
GF0(M, P), such that {ρn} converges to ρ, and, for all large enough n, Cn is a
collection of disjoint simple closed geodesics on Dn = ΩD(ρn)/ρn(π1(M)) of total
length at most K, then Cn is pinchable for all sufficiently large n.

Proof of Proposition 6.1. We first pick x0 in the interior of C(Nρ̄). Let x̃0

be a point in CH(Λ(ρ̄(π1(M))) which projects to x0. Theorem 5.1 implies that
{Ω(ρn)} converges to Ω(ρ), so x̃0 lies in the interior of CH(Λ(ρn(π1(M))) for
all sufficiently large n. Let {g1, . . . , gk} be a set of generators for π1(M). Since
{ρn} converges, there exists S > 0 such that d(x̃0, ρn(gi)(x̃0)) ≤ S for all i and n,
and there exists δ > 0 such that d(x̃0, x̃) ≤ S implies that d(x̃, γ(x̃)) ≥ 2δ for all
γ ∈ ρn(π1(M)−{id}) and any n. Therefore, if γi,n is a geodesic loop in Nn = Nρn

based at x0 representing ρn(gi), then γi,n has length at most S and injNn(x) ≥ δ at
any point x of γi,n. (Here we have implicitly identified π1(Nn, x0) with ρn(π1(M)).)
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Let r̄n : Nn ∪ ∂cNn → ∂C(Nn) be the nearest point retraction. Theorem 2.2
implies that r̄n(Cn) is homotopic, in ∂C(N), to a collection C′

n of curves in ∂C(N)
of length at most K′ = 45KeK/2. For each n, choose εn > 0, such that:

(1) C′
n is contained in C(Nn)εn ,

(2) εn < µ where µ is the Margulis constant,

(3) eK′′
sinh (2εn) < δ where K′′ =

√
K′+1
π + 2K′+1

δ + 1, and

(4) any curve in P(Nn)εn which is homotopic into C′
n is homotopic to a curve

of length at most 1 on P(Nn)εn .

Let hn : M − P → Nn ∪ ∂cNn be a homeomorphism in the homotopy class
determined by ρ and let jn : Nn ∪ ∂cNn → C(Nn) be a homeomorphism properly
homotopic to r̄n. Let kn : C(Nn) → C(Nn)εn−P(Nn)εn be a homeomorphism which
is the identity on C′

n (We may construct kn, since C(Nn)−C(Nn)εn is homeomor-
phic to P(Nn)εn × (0,∞).) Proposition 2.12.4 in Canary-McCullough [18] implies
that there exists a pared homeomorphism ψn : (M, P) → (C(Nn)εn , P(Nn)εn) which
agrees with kn◦jn◦hn off of a regular neighborhood of P. In particular, ψn(h−1

n (Cn))
is homotopic to r̄n(Cn) within ∂C(N).

If the theorem fails, we can pass to a subsequence, again called {ρn}, such
that Cn is not pinchable for any n. Therefore, there exists, for all n, a surface Bn

in M which is either a compressing disk or an immersed essential annulus with
boundary contained in h−1

n (Cn) ∪ P. Let B′
n = ψn(Bn). After a proper homotopy,

we may assume that B′
n is either a compressing disk with boundary in C′

n or an
immersed essential annulus with boundary in C′

n ∪ Pn where Pn = P(Nn)εn . In
particular, we may assume that the boundary of B′

n has length at most 2K′ + 1.

Claim. Each surface B′
n is homotopic, rel boundary, to a surface Yn such that

if x ∈ Yn and injNn(x) ≥ δ, then d(x, C′
n) ≤ k(δ) for some uniform constant k(δ).

We briefly describe the construction of Yn from Proposition 3.1 of [17]. One
first constructs a pleated disk or annulus Xn by subdividing ∂B′

n into segments
of length at most 1, extending this subdivision to a triangulation of B′

n with no
internal vertices, and then pulling each simplex tight (relative to its vertices) so
that each simplex is totally geodesic. Since the area of a hyperbolic triangle is
at most the length of any of its sides Xn has area at most 2K′ + 1 The boundary
∂Xn of our pleated surface is homotopic to ∂B′

n by a homotopy of track length
at most one. We append this homotopy to Xn to form Yn.

The proof of our claim in the cases in which B′
n is a compressing disk or an

annulus with boundary in C′
n are handled exactly as in Proposition 3.1 of [17],

in which case k(δ) may be chosen to be 2K′

δ +
√

K′
π + 1. So, we may assume that

B′
n is an annulus with boundary in Pn ∪ C′

n. If x ∈ Xn and injNn(x) ≥ δ, then the

argument in [17] gives that d(x, ∂Xn) ≤
√

K′+1
π + 2K′+1

δ . So, d(x, ∂B′
n) ≤ K′′ =
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√
K′+1
π + 2K′+1

δ + 1. But if d(x, Pn) ≤ K′′, then, by inequality 1 in Section 2.2,

injNn(x) ≤ eK′′
sinh (2εn) < δ

which contradicts our assumption that injNn(x) ≥ δ. So, in this case,
d(x, C′

n) ≤ K′′. Thus, we have completed the proof of our claim with k(δ) = K′′.
Since the surface Yn is essential and the loops {γi,n} represent generators of

π1(Nn, x0), at least one of these loops, say γj,n, must intersect Yn. Since γj,n has
length at most S and every point on γj,n has injectivity radius at least δ, there
exists a point y′n on C′

n which lies a distance of at most K̂ = S + k(δ) from x0.
We may assume, without loss of generality, that we are working in the ball

model and that x̃0 is at the origin. Let ỹ′n be a lift of y′n which lies within K̂ of
x̃0 and let zn be a point in r−1

n (ỹ′n). Notice that r̄−1
n (C′

n) lies in Dn, since C′
n is

homotopic to r̄n(Cn) and Cn ⊂ Dn, so zn lies in ΩD(ρn). Let Hn be the support
plane to CH(Λ(ρn)) passing through ỹ′n and perpendicular to the geodesic ray
joining ỹ′n to zn. Then Hn bounds an open disk An ⊂ S2 which is contained
within ΩD(ρn). Moreover, An contains an open disk of (spherical) radius at least
ε about zn, where ε > 0 depends only on K̂. We may pass to a subsequence, still
named {ρn}, so that zn converges to a point z ∈ Ĉ. Since {Ω(ρn)} converges
to Ω(ρ), the open ball of radius ε about z lies in Ω(ρ), so z ∈ γ(∆s) for some
γ = ρ(g) ∈ ρ(π1(M)) and some s. Since, by Lemma 5.2, ρn(g)(∆s

n) converges to
γ(∆s), we see that, for all sufficiently large n, An ∩ ρn(g)(∆s

n) is nonempty, so
An ⊂ ρn(g)(∆s

n) ⊂ ΩF(ρn). Since ΩF(ρn) and ΩD(ρn) are disjoint, by definition,
this contradiction establishes the result.

7. Finding short pinchable collections. We next see that if [ρ̄] is min-
imally parabolic and lies in ∂GF0(M, P), then we can find a sequence [ρn] ∈
GF0(M, P) which converges to [ρ] such that there is a sequence {Cn} of pinch-
able pants decompositions of the “degenerating portions” Dn of ∂cNρn such that
{l(Cn)} converges to 0. This is the analogue of Proposition 4.1 in [17]. The key
tools in the proof are Lemma 2.7, Proposition 6.1 and Sullivan’s rigidity theorem.

LEMMA 7.1. Suppose that ρ̄ is minimally parabolic, ({∆1, . . . , ∆m},
{z1, . . . , zm}) is a bauble for ρ̄, and [ρ̄] ∈ ∂GF0(M, P). Then there exists a sequence
{[ρn]} in GF0(M, P) converging to [ρ̄] such that, for all n, there exists a pinchable
pants decomposition Cn of Dn = ΩD(ρn)/ρn(π1(M)) and {l(Cn)} converges to 0.

Proof of Lemma 7.1. Let {[ρ′j]} be a sequence in GF0(M, P) which converge
to [ρ̄], such that {ρ′j} converges to ρ̄. By eliminating finitely many terms, we may
assume that an approximating bauble ({∆1

j , . . . , ∆m
j }, {z1, . . . , zm}) exists for all

ρ′j. Let Dj = ΩD(ρ′j)/ρ
′
j(π1(M)). Bers’ inequality (see [8]) implies that there exists

a pants decomposition Cj of Dj such that l(Cj) ≤ κ for some uniform constant κ
depending only on the topology of ∂M − P.
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Applying Lemma 2.7 we produce, for each j, a sequence {ρj,n} in GF0(M, P)
such that for each j and n there exists a Kn-quasiconformal map φ̃j,n conjugating
ρ′j to ρj,n such that φ̃j,n is conformal on ΩF(ρ′j) and l(φj,n(Cj)) ≤ κ

2n . We may
normalize so that φ̃j,n(z1) = z1 and dφ̃j,n|z1 is the identity map. If we define
Dj,n = φj,n(Dj), then Cj,n = φj,n(Cj) is a pants decomposition of Dj,n of length at
most κ

2n .
For each fixed n, {φ̃j,n} is a sequence of Kn-quasiconformal maps such that

φ̃j,n(z1) = z1 and dφ̃j,n|z1 is the identity map. Therefore, {φ̃j,n} is a normal family.
If ψ is a limit of a convergent subsequence, then ψ is Kn-quasiconformal, ψ is
conformal on Ω(ρ̄) (since {ΩF(ρ′j)} converges to Ω(ρ̄)), ψ(z1) = z1, dψ|z1 is the
identity map, and ρ̄n = ψρ̄ψ−1 ∈ D(π1(M),π1(P)). Sullivan’s rigidity theorem
[42] implies that ψ is conformal and hence the identity map, so ρ̄n = ρ̄ for all n.
Thus, for each n, {φ̃j,n} converges to the identity map and {ρj,n} converges to ρ̄.

For each n we choose j(n) such that zs ∈ φ̃j(n),n(∆s
j(n)) for all s, and

dR(ρj(n),n, ρ̄) ≤ 1
n

(where dR is some metric on D(π1(M),π1(P))). Let ρn = ρj(n),n. It then follows
that Cn = Cj(n),n is a pants decomposition of Dn = φj(n),n(Dj(n),n) of length at most
κ
2n . Notice that {ρn} converges to ρ̄ and that ({φ̃j(n),n(∆1

j(n)), . . . , φ̃j(n),n(∆m
j(n))},

{z1, . . . , zm}) is an approximating bauble for all n. Thus, Dn = ΩD(ρn)/ρn(π1(M))
and Proposition 6.1 implies that Cn is pinchable for all large enough n. We may
then remove finitely many terms to obtain the desired sequence.

8. A topological rigidity result for pared manifolds. In this section, we
develop a topological tool which will allow us to recognize the topological type
of the hyperbolic manifold obtained by pinching a pinchable collection of curves.
This topological realization will also allow us to conclude that the manifold is
geometrically finite.

We recall that it is a consequence of Johannson’s Classification Theorem
(see Theorem 2.5) that any pared homotopy equivalence between acylindrical
pared manifolds is homotopic to a pared homeomorphism. Waldhausen’s theorem
[47] assures us that any homotopy equivalence between Haken manifolds which
preserves the boundary is a homeomorphism. The following proposition may be
viewed as a mixture of these two results.

PROPOSITION 8.1. Let (M, P) be a pared manifold and let (M̂, P̂) be a compact,
irreducible 3-manifold pair. Suppose that f : (M, P) → (M̂, P̂) is a map of pairs
such that:

(1) f is a homotopy equivalence,

(2) f |P : P → P̂ is a homeomorphism, and



1212 RICHARD D. CANARY AND SA’AR HERSONSKY

(3) there exists a submanifold Z of ∂M − P which contains a compact core
for each component of ∂M − P which is not a thrice-punctured sphere, such that f
embeds Z in ∂N − Q.

Then f is homotopic to a homeomorphism of pairs.

Proof of Proposition 8.1. The key tool in our proof is the following lemma:

LEMMA 8.2. Let (M, P) be a pared manifold. Then there exists a maximal pared
manifold (M, Q) such that P is a collection of components of Q.

We will give the proof of Proposition 8.1 and then return to the proof of
Lemma 8.2.

Let (M, Q) be a maximal pared manifold such that P is a collection of com-
ponents of Q. Lemma 2.6 implies that (M, Q) is an acylindrical pared manifold.
We may assume that Q−P is contained in the interior of Z. Let Q̂ = P̂∪ f (Q−P).

We next check that (M̂, Q̂) has relatively incompressible boundary. Since
(M, Q) has relatively incompressible boundary, Proposition 1.2 in Bonahon [9]
(see also Lemma 5.2.1 in Canary-McCullough [18]) implies that if π1(M) = G∗H
is any nontrivial free decomposition of π1(M), then there exists an element of
π1(Q) which is not conjugate into either G or H. If (M̂, Q̂) does not have relatively
incompressible boundary, then Dehn’s Lemma gives a compressing disk with
boundary in ∂M̂ − Q̂, and hence a nontrivial free decomposition π1(M̂) = Ĝ ∗ Ĥ
such that every element of π1(Q̂) is conjugate to an element of either Ĝ or
Ĥ. However, f∗ induces an isomorphism of π1(M) to π1(M̂) which takes the
conjugacy class of any element of π1(Q) to the conjugacy class of an element of
π1(Q̂), so we have achieved a contradiction.

Theorem 2.5 then implies that f is homotopic to a homeomorphism of pairs
between (M, Q) and (M̂, Q̂) and hence to a homeomorphism of pairs between
(M, P) and (M̂, P̂).

We now return to the proof of Lemma 8.2

Proof of Lemma 8.2. We will first observe that if (M, P) is not maximal, then
there exists a pared manifold (M, Q′) such that P is a proper subcollection of the
components of Q′. One may iteratively apply this observation to find a maximal
pared manifold (M, Q) such that P is a collection of components of Q.

Since (M, P) is not maximal, Lemma 4.1 implies that GF0(M, P) is nonempty
and Lemma 4.2 implies that there exists a minimally parabolic representation
[ρ̄] ∈ ∂GF0(M, P). Let {[ρn]} be a sequence in GF0(M, P) such that {ρn} con-
verges to {ρ̄}. Let ({∆1, . . . , ∆m}, {z1, . . . , zm}) be a bauble for ρ̄. Then, by Lemma
5.3, there exists, for all sufficiently large values of n, an approximating bauble
({∆1

n, . . . , ∆m
n }, {z1

n, . . . , zm
n }) for ρn such that Dn = ΩD(ρn)/ρn(π1(M)) is nonempty

and no component of Dn is a thrice-punctured sphere.
Bers’ inequality [8] implies there exists a pants decomposition Cn of Dn of

length at most κ > 0 (where κ depends only on the topology of ∂M − P). Now,



UBIQUITY OF GEOMETRIC FINITENESS 1213

Proposition 6.1 implies that Cn is pinchable for all sufficiently large n. Hence, we
may choose Q′ = P∪N (h−1

n (Cn)) where hn : ∂M−P → Nρn is a homeomorphism
in the homotopy class determined by ρ, N (h−1

n (Cn)) is a regular neighborhood
of h−1

n (Cn) in ∂M − P, and n is large enough that Cn is pinchable.

9. The main global estimate. In this section we establish our main global
estimate, which asserts that if [ρ] ∈ GF0(M, P) and C is a “short” pinchable pants
decomposition of a collection R of components of ∂cNρ, then [ρ] is “near” to
a geometrically finite representation [ρ̂] ∈ ∂GF0(M, P) such that each nontrivial
element of ρ̂(π1(C)) is parabolic.

The proof of the existence of ρ̂ is almost exactly the same as the proof of
Proposition 6.1 in [17]. The key tool in the proof of existence is the main local
estimate, Theorem 2.8. However, there are new technical difficulties associated
with proving that ρ̂ is geometrically finite. We overcome these using bauble
theory, the relative compact core and our topological rigidity result, Proposi-
tion 8.1. Our use of the relative compact core in this manner may be viewed
as a generalization of earlier work of Maskit-Swarup [33] and Keen-Maskit-
Series [27].

THEOREM 9.1. Let (M, P) be a pared 3-manifold such that ∂M−P is nonempty
and let A = {a1, . . . , am} be an allowable collection of test elements in π1(M).
Given d0 and d1 such that d1 > 4d0 > 0, there exists L1 > 0 and G > 0 such that
if [ρ] ∈ GF0(M, P) and

(1) C is a pinchable pants decomposition of a collection R of components of
∂cNρ,

(2) C has length L < L1,

(3) no element of A represents a curve in C, and

(4) If ai does not represent a curve in P, then d1
2 ≥ lρ(ai) ≥ 2d0 where lρ(ai)

denotes the real translation distance of ρ(ai),

then there exists a (conjugacy class of a) geometrically finite representation [ρ̂] ∈
∂GF0(M, P) such that

dA([ρ], [ρ̂]) ≤ G L.

Moreover, [ρ̂] ∈ GF0(M, P ∪ N (h−1(C)) where h : M − P → ∂cNρ ∪ Nρ is
a homeomorphism in the homotopy class determined by ρ and N (h−1(C)) is a
regular neighborhood of h−1(C) in ∂M − P. In particular, if R = ∂cNρ, then ρ̂ is a
maximal cusp.

Proof of Theorem 9.1. Recall the quotient map qT : T (T2) → CC0(S1 ×D2)
and identify π1(S1 × D2) with Z. Let

Es =
{
σ ∈ T (T2)| 2d0 ≤ l(qT (σ)(1)) ≤ d1/2

}
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and

Ef =
{
σ ∈ T (T2)| d0 ≤ l(qT (σ)(1)) ≤ d1

}

where l(qT (σ)(1)) denotes the real translation distance of qT (σ)(1).
We may reorder A so that ai is conjugate into π1(P) if and only i > m0.

(It is possible that m0 = m.) By condition (4), ϒai([ρ]) ∈ qT (Es) for all i ≤ m0.
The sets qT (Es) and qT (Ef ) are compact subsets of CC0(S1 × D2). Let δ be the
(nonzero) distance, in the Teichmüller metric on CC0(S1 × D2), between qT (Es)
and the boundary of qT (Ef ).

Let c0 and K0 be the constants associated to d0 in the main local estimate,
Theorem 2.8. Let B1 be the value of B produced by Lemma 2.7 when L0 = c0

and let B2 = mB1. Assuming that L ≤ c0, we may iteratively apply Lemma 2.7
(reducing the length of C by a factor of 2 at each stage) to produce an infinite path
β : [0,∞) → T (∂cNρ) where β(t) = (Xt, gt) such that, for all t ∈ [nB2, (n + 1)B2],

lXt (gt(C)) ≤ L
2n

and there exists µt ∈ B(Xt) such that:

(1) DΦqM(β(t))(µt) = β′(t),

(2) ‖µt‖ ≤ 1, and

(3) µt is supported on the L
2n−1 -thin part of Xt associated to gt(C).

Assuming that L1 ≤ c0e−d1 , Theorem 2.8 implies that if i ≤ m0, then

‖Dϒai(DΦ̄qM(β(t))(µt))‖ = ‖Dϒ̃ai(β
′(t))‖ ≤ K0

L
2n

for all t ∈ [nB2, (n + 1)B2] such that ϒ̃ai(β(t)) ∈ Ef . Therefore, by integrating the
above estimate we see that ϒ̃ai(β([0,∞))) ∩ Ef has length at most

K0B2

(
L +

L
2

+ · · · +
L
2n + · · ·

)
= 2K0B2L.

If L1 < δ
2K0B2

, this implies that the entire path lies in Ef . Let

L1 = min
{

c0e−d1 ,
δ

2K0B2

}
.

If [ν] ∈ CC0(S1×D2), let τ̄0([ν]) denote the square of the trace of ν(1). Then τ̄0 :
CC0(S1 ×D2) → C is smooth and τ̄a([ρ′]) = τ̄0(ϒa([ρ′])) for all [ρ′] ∈ GF0(M, P)
and all a ∈ π1(M) such that a is not conjugate into π1(P). Since qT (Ef ) is compact
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and τ̄0 is smooth, there exists K3 > 0 such that if ν1, ν2 ∈ qT (Ef ), then

|τ̄0(ν1) − τ̄0(ν2)| ≤ K3d(ν1, ν2)

(where d denotes the Teichmüller metric on CC0(S1 ×D2)). Thus, for all i ≤ m0,

τ̄0(qT (ϒ̃ai(β([0,∞)))) = τ̄ai(qM(β([0,∞)))

has length at most 2K3K0B2L in C. (Notice that if i > m0, then τai(qM(β([0,∞)))
is constant.) Therefore, qM(β([0,∞))) has length at most 2mK3K0B2L in the dA-
metric on AH(π1(M),π1(P)). Thus, there is a conjugacy class [ρ̂] ∈ AH(π1(M),
π1(P)) which is an accumulation point of {qM(β(n))}. Let {[ρn]} be a subsequence
of {qM(β(n))} which converges to [ρ̂] such that {ρn} converges to ρ̂.

Let G = 2mK0K3B2. Then,

dA([ρ̂], [ρ]) ≤ GL.

It only remains to show that there exists a homeomorphism

ĥ : M − (P ∪ h−1(C)) → ∂cNρ̂ ∪ Nρ̂

in the homotopy class determined by ρ̂. Notice that this implies that ρ̂ is geomet-
rically finite.

Let h be the homeomorphism h : M − P → Nρ ∪ ∂cNρ from the statement
of the Theorem such that h∗ = [ρ]. Let C′ = h−1(C). If η is a curve in C′, then
lXt (gt(h(η))) converges to 0. Let b be an element of π1(M), such that η is a
representative of ρ(b). Proposition 6.1 of Sugawa [41] implies that the complex
translation length of ρt(b) also converges to 0. Thus, ρ̂(b) is parabolic. So, every
element of ρ̂(ρ−1(π1(C))) is parabolic.

Let T = ∂cNρ−R and let ΩT (ρ) denote the components of Ω(ρ) which cover
components of T . Notice that since gt is conformal on T for all t, there exists,
for all n, a quasiconformal map φ̃n conjugating ρ to ρn which is conformal on
ΩT (ρ).

Let {U1, . . . , Uq} denote a maximal collection of nonconjugate components
of ΩT (ρ). Since the stabilizer of each component of Ω(ρ) is a nonelementary
Kleinian group, we may, for each s, pick gs, hs ∈ π1(M) such that ρ(gs) and ρ(hs)
both stabilize Us, < gs, hs > is a free subgroup of π1(M) of rank 2 and ρ̂(gs) and
ρ̂(hs) are hyperbolic. Notice that φ̃n(Us) misses the four fixed points of ρn(gs)
and ρn(hs) for all i, and that these fixed points converge to the four fixed point of
ρ̂(gs) and ρ̂(hs). Montel’s theorem then implies that {φ̃n|Us} is a normal family
for all s. Pick a subsequence of {ρn}, again denoted {ρn}, such that for each s,
{φ̃n|Us} converges to a map ψ̃s with domain Us. Then, for each s, either ψ̃s is
conformal or its image is a point.
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Suppose that, for some s, ψ̃s is a constant map with image ws. Pick zs ∈ Us,
then {φ̃n(ρn(gs)(zs))} = {ρn(gs)(φ̃n(zs))} must converge to ρ̂(gs)(ws). Therefore,
ws must be a fixed point of ρ̂(gs). We may similarly conclude that ws is a fixed
point of ρ̂(hs). Since ρ̂(gs) and ρ̂(hs) are noncommuting hyperbolic elements
contained in a discrete group, their fixed points must be distinct. Therefore, ψ̃s

must be a conformal map for all s.
Since Ω(ρ̂) contains the limit of any subsequence of {Ω(ρn)}, we see im-

mediately that ψ̃s(Us) ⊂ Ω(ρ̂). Let Θs be the stabilizer stabρ(π1(M))(Us) of Us

in ρ(π1(M)) and let Gs = ρ−1(Θs). Then, for all n, φ̃n(Us) is a component
of Ω(ρn) and ρn(Gs) = stabρn(π1(M))(φ̃(Us)). Since {ρn} converges to ρ̂ and
{φ̃n|Us} converges to ψ̃s, ρ̂(Gs) ⊂ stabρ̂(π1(M))(ψ̃s(Us)). On the other hand, if

ρ̂(g)(ψ̃s(Us)) ∩ ψ̃s(Us) is nonempty, then ρn(g)(φ̃n(Us)) ∩ φ̃n(Us) is nonempty
for all large enough n, which implies that g ∈ Gs. Therefore, ψ̃s descends to a
conformal embedding ψs : Us/ρ(π1(M)) → ∂cN̂ where N̂ = Nρ̂.

We may combine the maps {ψ1, . . . ,ψm} to construct a conformal embedding
ψ : T → ∂cN̂. Let S = h−1(T) and let C′ = h−1(C). Let S0 be a compact core
for S and let T0 = h(S0). Let ĵ : N̂ ∪ ∂cN̂ → C(N̂) be a homeomorphism properly
homotopic to the nearest point retraction. Choose ε such that µ > ε > 0 and
ĵ(T0) ⊂ C(N̂)ε. Let (M̂, P̂) be a relative compact core for C(N̂)ε whose intersection
with ĵ(T) contains j(T0).

Let f : M → M̂ be a homotopy equivalence in the homotopy class determined
by ρ̂. Let P′ = P∪N (C′) where N (C′) is a regular neighborhood of C′ in ∂M−P.
If β is a core curve of an annular component P0 of P′, then f (β) is homotopic
into a rank one cusp of N̂ and hence into an annular component of P̂. Since
π1(P0) is a maximal abelian subgroup of π1(M), f (β) is homotopic to a core
curve of a component of Q̂. Similarly, if P0 is a toroidal component of P, then
f (P0) is homotopic into a rank 2 cusp of N̂, and since π1(P0) is a maximal abelian
subgroup of π1(M), f (P0) is homotopic to a toroidal component of P̂. Therefore,
we may assume that f |P′ is a homeomorphism whose image is a collection P̂′ of
components of P̂.

If Z is a component of ∂M −P′ which is not a thrice punctured sphere, then
Z is a component of T . Let Z0 be a compact core for Z which is a component
of S0. Then, f |Z0 is homotopic to the embedding ĵ ◦ ψ ◦ h|Z0 . Therefore, we may
assume, after homotopy, that f |S0 = ĵ ◦ ψ ◦ h|S0 . Proposition 8.1 then implies that
f is homotopic to a pared homeomorphism g : (M, P′) → (M̂, P̂′).

We next argue that P̂ = P̂′. Notice that the toroidal components of both P and
P̂ are in a one-to-one correspondence with the conjugacy classes of maximal rank
two free abelian subgroups of π1(M) and π1(M̂). Since f is a homotopy equiva-
lence, every toroidal component of P̂ lies in P̂′. Let Y be a pants decomposition
of T0 and let R be a collection of core curves of all the annular components
of P′. Then Y ∪ R is a pants decomposition of the nontoroidal components of
∂M, and f (Y) ∪ f (R) is a collection of disjoint, nonparallel simple closed curves
contained in nontoroidal components of ∂M̂, none of which bounds a disk in ∂M̂.



UBIQUITY OF GEOMETRIC FINITENESS 1217

Since M is homotopy equivalent to M̂, the Euler characteristic of ∂M̂ must agree
with the the Euler characteristic of ∂M. Hence, a pants decomposition of the
nontoroidal components of M̂ must have the same number of curves as a pants
decomposition of the nontoroidal components of M. It follows that f (Y) ∪ f (R)
must be a pants decomposition of the nontoroidal boundary components of ∂M̂.
In particular, P̂ must equal P̂′ and each component of f (∂T0) must be parallel to
an annular component of P̂ in ∂M̂.

Recall that the ends of N̂0
ε are in one-to-one correspondence with the com-

ponents of ∂M̂ − P̂. If Z is a component of ∂M̂ − P̂ which is homeomorphic
to a thrice-punctured sphere, then its associated end is geometrically finite by
Lemma 2.3. If Z is not homeomorphic to a thrice-punctured sphere, then it con-
tains a component of ψ(T0), so the end associated to Z must be geometrically
finite, since the component of N̂0

ε − M̂ bounded by Z contains a component of
N̂ −C(N̂). Since all the ends of N̂0

ε are geometrically finite, N̂ is itself geometri-
cally finite.

Since N̂ is geometrically finite, we may assume that (M̂, P̂) = (C(N̂)ε, P(N̂)ε).
Also note that, since the closure of C(N̂)−C(N̂)ε may be identified with P(N̂)ε×
[0,∞), there exists a homeomorphism k̂ : N̂ ∪ ∂cN̂ → C(N̂)ε − P(N̂)ε which is
homotopic to ĵ. Then k̂−1 ◦ g gives a homeomorphism from M − P′ to N̂ ∪ ∂cN̂
in the homotopy class determined by ρ̂. Thus, ρ̂ ∈ GF0(M, P′).

Remarks. (1) If one only requires that ρ̂ be geometrically finite, and does
not insist on verifying the homeomorphism type, one may make a simpler ar-
gument which is more directly in the spirit of Keen-Maskit-Series [27]. While
establishing that P̂ = P̂′ we observed that f (Y)∪ f (R) is a pants decomposition of
the nontoroidal components of ∂M̂. This argument did not use Theorem 8.1 or
the topological theory of pared manifolds. It then follows that every component
of ∂M̂ − P̂ which does not contain a component of f (T0) is a thrice punctured
sphere, and hence that every end of N̂0

ε is geometrically finite (as in the next to
last paragraph of the proof of Theorem 9.1.)

(2) Bromberg [14] has recently given a new proof of Theorem 9.1, in the
case that P has no annular components, using cone manifold techniques. His
proof allows C to be any pinchable collection of curves.

10. Compiling the proof. The proof of our Main Theorem follows from
Theorem 10.1 which asserts that minimally parabolic representations in
∂GF0(M, P) may be approximated by geometrically finite points in ∂GF0(M, P)
and Lemma 4.2 which asserts that minimally parabolic representations are dense
in ∂GF0(M, P). Notice that Theorem 10.1 generalizes Theorem 16.2 and the Main
Theorem of [17].

THEOREM 10.1. Let (M, P) be any pared 3-manifold. If [ρ̄] ∈ ∂GF0(M, P) is
minimally parabolic, then [ρ̄] may be approximated by (conjugacy classes of) geo-
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metrically finite representations in ∂GF0(M, P). If, in addition, Ω(ρ̄) = ∅, then [ρ̄]
may be approximated by maximal cusps in ∂GF0(M, P).

Proof of Theorem 10.1. Let ({∆1, . . . , ∆m}, {z1, . . . , zn}) be a bauble for
ρ̄. Lemma 7.1 supplies a sequence {[ρn]} in GF0(M, P) converging to [ρ̄] and a
sequence {Cn} of pinchable pants decompositions of {Dn} whose lengths {l(Cn)}
converge to 0. Let A = {a1, . . . , am} be an allowable collection of test elements,
provided by Proposition 2.1.

We may reorder A so that ai is conjugate into π1(P) if and only if i > m0.
We may choose positive constants d0 and d1 such that

4d0 < lρ(ai) <
d1

4

for all i ≤ m0. Let L1 be the constant provided by Proposition 9.1 with our chosen
values of d0 and d1.

Since {[ρn]} converges to [ρ] and {l(Cn)} converges to 0, there exists n0

such that if n ≥ n0, then

(1) 2d0 ≤ lρn(ai) ≤ d1
2 for all i ≤ m0,

(2) 45l(Cn)el(Cn)/2 < d0, and

(3) l(Cn) < L1.

If ρn(cn) is an element of ρn(π1(M)) representing a curve in Cn and n ≥ n0,
then Theorem 2.2 implies that there is a representative of ρn(cn) in ∂C(Nρn) of
length at most 45l(Cn)el(Cn)/2 < d0. It follows that the real translation length
l(ρn(cn)) of ρn(cn) is less than d0. Therefore, no curve in Cn is represented by an
element of A.

Theorem 9.1 implies that, for all n > n0, there exists a geometrically finite
point [ρ̂n] ∈ ∂GF0(M, P) such that

dA([ρn], [ρ̂n]) ≤ Gl(Cn).

Since, {dA([ρn], [ρ])}) and {l(Cn)} both converge to 0, {[ρ̂n]} converges to [ρ].
Thus, {[ρ̂n]} is the desired sequence.

Notice that if Ω(ρ) = ∅, then Dn = ∂cNρn and Cn is a pants decomposition of
∂cNρ, so ρ̂n is a maximal cusp, for each n.

Combining Lemma 4.2 and Theorem 10.1 gives our main result in the case
that (M, P) is not maximal. If (M, P) is maximal then GF0(M, P) = AH(π1(M),
π1(P)) is a single point, see Keen-Maskit-Series [27], so our main result is vac-
uously true.

MAIN THEOREM. Let (M, P) be a pared 3-manifold such that π1(M) is non-
abelian and ∂M − P is nonempty. Then conjugacy classes of geometrically finite
representations are dense in the boundary of GF0(M, P).
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Corollary A, which generalizes Corollaries 15.4 and 16.4 in [17], follows
nearly immediately from our main theorem.

COROLLARY A. Let (M, P) be a pared 3-manifold with nonabelian fundamental
group such that ∂M − P is nonempty. Then the set of conjugacy classes [ρ] ∈
∂GF0(M, P) such that Nρ contains arbitrarily short geodesics is a dense Gδ subset
of ∂GF0(M, P).

Proof of Corollary A. If g ∈ π1(M), we consider the function

lg : AH(π1(M),π1(P)) → [0,∞)

where lg([ρ]) is the real translation length of ρ(g). Since lg is continuous for all g,
the set Un of representations in ∂GF0(M, P) whose associated manifolds contain
a closed geodesic of length less than 1

n is open in ∂GF0(M, P) for all n. Since
minimally parabolic representations are dense in ∂GF0(M, P) and geometrically
finite points are dense in ∂GF0(M, P), Un is dense in ∂GF0(M, P) for all n. The
Baire category theorem then applies to show that

⋂
n∈Z+

Un is a dense Gδ in
∂GF0(M, P).
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