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Abstract. Let T be a triangulation of a closed topological cube Q, and let V be the set of
vertices of T . Further assume that the triangulation satisfies a technical condition which we
call the triple intersection property (see Definition 3.6). Then there is an essentially unique
tiling C = {Cv : v ∈ V } of a rectangular parallelepiped R by cubes, such that for every edge
(u, v) of T the corresponding cubes Cv, Cu have nonempty intersection, and such that the
vertices corresponding to the cubes at the corners of R are at the corners of Q. Moreover,
the sizes of the cubes are obtained as a solution of a variational problem which is a discrete
version of the notion of extremal length in R3.

0. Introduction

One exciting connection between two dimensional conformal geometry and packing is
provided by the circle packing theorem, which asserts that if G is a finite planar graph,
then there is a packing of Euclidean disks in the complex plane whose contact graph is G.
This remarkable result was first proved by Koebe (cf. [13]) as a consequence of his theorem
that every finite planar domain is conformally equivalent to a circle domain. Koebe’s result
was rediscovered and vastly generalized by Thurston (cf. [25] and [26, Chapter13]) as a
corollary of Andreev’s Theorem (cf. [2] and [3]). Thurston also conjectured that a sequence of
maps, naturally associated to circle packings of a simply connected domain, converges to the
Riemann map from this domain to the unit disk. This conjecture was proved by Rodin and
Sullivan (cf. [15]), thus providing a second foundational connection between circle packing
and conformal maps. In his thesis and later work, Schramm (see in particular [24, Theorem
6.1]) generalized the circle packing theorem allowing the tiles in the packing to be homothetic
to C1 closed topological disks. His result is based on an elaborated conformal uniformization
theorem of Brandt and Harrington, and established another important connection between
circle packing and two dimensional conformal geometry.

Following a suggestion by Thurston, Schramm (cf. [23]) studied the case in which the tiles
in the packing are squares. An independent and similar study was carried out by Cannon,
Floyd and Parry (cf. [9]), as part of their attempts to resolve Cannon’s conjecture. Both
results are based on discrete extremal length arguments, a notion first developed by Cannon
(cf. [8]). This notion has its origin in the subject of two dimensional quasiconformal maps,
where extremal length arguments are essential. There are a wealth of other results, relating
combinatorics and packing that one should mention. Benjamini and Schramm (cf. [4])
studied the case where the tiled set is an infinite straight cylinder while Kenyon (cf. [12])
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allowed the tiles of the packing to be polygons. It is important to recall that the results in
[12], as well as more contemporary work by the author of this paper (cf. [19] and [20]), do
not use discrete extremal length methods. Rather, the usage of discrete harmonic functions

as first employed by Dehn (cf. [11]), and later on by Brooks, Smith, Stone and Tutte (cf.
[7]), is utilized. These results are also different from the ones obtained in [23], [9] and [4]. In
these papers, a tile corresponds to a vertex in a given triangulation. In [11], [7], [12], [19] and
[20], a tile corresponds to an edge of the triangulation. It is also worth noting that in [19]
and [20], multi-connected, bounded, planar domains were studied (under the framework of
boundary value problems on graphs) for the first time. This provides tiling of higher genus
surfaces with conical singularities by rectangles.

The main goal of this paper is to provide the first connection between discrete extremal
length in R3, a notion which we will recall in §1, and tiling by cubes (see Remark 3.31 for one
possible generalization). In this paper, we study the case of a topological closed cube. It is
interesting to note that quite recently Benjamini and Schramm (cf. [5]), as well as Benjamini
and Curien (cf. [6]), have explored different and interesting applications of discrete extremal
length in higher dimensions.

Before stating the main result of this paper we make

Definition 0.1. Let B be a closed triangulated topological ball, and let V,E and F denote
the set of vertices, edges, and faces of the triangulation, respectively. Let ∂B = B1 ∪ B̄1 ∪
B2 ∪ B̄2 ∪ B3 ∪ B̄3 be a decomposition of ∂B in such a way that each Bj is a nonempty
connected union of faces of the triangulation, Bi ∩ B̄j = ∅ for i = j, and consists of a union
of edges of the triangulation, if i 6= j. The collection T = {V,E, F ;B1, B̄1, B2, B̄2, B3, B̄3}
will be called a triangulation of a topological cube. We will denote by B1 the base face, by

B̄1 the top face, by B2 the front face, by B̄2 the back face, by B3 the left face, and by B̄3 the

right face.

The main result of this paper is

Theorem 0.2. Let T = {V,E, F ;B1, B̄1, B2, B̄2, B3, B̄3} be a triangulation of a topological

cube which has the triple intersection property. Then there exists a positive number h and a

cube tiling C = {Cv : v ∈ V } of the rectangular parallelepiped R = [0,
√
h−1]×[0,

√
h−1]×[0, h]

such that

(0.3) Cv ∩ Cu 6= ∅ whenever (v, u) ∈ E.

In addition, let R1, R̄1, R2, R̄2, R3, and R̄3 be the base, top, front, back, left, and right faces

of R, respectively. Then it can also be arranged that for i = 1, 2, 3 we have

(0.4) Cv ∩Ri(R̄i) 6= ∅ whenever v ∈ Bi(B̄i).

Under these conditions, the number h and the tiling C are uniquely determined.

Theorem 0.2 is a generalization to three dimensions of the main result (Theorem 1.3) as
well as the techniques in [23], under an extra assumption. Schramm’s proof (along with the
proof given by Cannon, Floyd and Parry) fails to work in three dimension. The planarity of
the triangulation is essential in their proofs. The triple intersection property (Definition 3.6),
enables us to extract the ideas and techniques in [23] and carry out our proof, which then
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becomes straightforward. We have examples in which this property holds, and which can be
characterized by saying that the triangulation has a spine (Definition 3.8).

The rest of this paper is organized as follows. In §1, we recall the notion of discrete
extremal length in dimension three and prove the existence and uniqueness of an extremal

metric (up to scaling). In §2, we prove that tiling by cubes induces an extremal metric, and
in §3, we prove that an extremal metric induces a tiling by cubes. Finally, §4 is devoted to
questions and suggestions for further research.

Acknowledgement. After receiving an early version of this paper, I. Benjamini brought to our
attention recent references regarding applications of discrete extremal length in high dimensions
(cf. [5] and [6]).

1. Perspective and basic definitions

In the 1940’s, Ahlfors and Beurling have refined existence methods (by Grötzch and Teichmüller)
and extremal length was used as a conformally invariant measure of planar curve families (see for
instance [1] for a useful account). Löwener (cf. [14]) showed how this method can be extended
to three dimensions by defining a conformal capacity for rings in Euclidean 3-space by means of
a Dirichlet integral. Väisälä (cf. [27, 28]) and S̆abat (cf. [21, 22]) have used extremal length
arguments to study quasiconformal mappings in 3-space, each of them has introduced a new kind
of capacity for a ring in three dimensional Euclidean space. Shortly afterwards, Gehring (cf.
[16, Theorem 1]) showed that slight modifications of their definitions are equivalent to the one
given by Löwener. Extremal length arguments have continued to be useful tools in the theory of
quasiconformal mappings of the plane and have found profound application in Teichmüller theory
and the theory of hyperbolic manifolds and their deformations. We wish to restrict the background
and preliminaries to a minimum. Hence, we will not describe many of the modern definitions
and exciting applications of extremal length in the general setting of metric measure spaces. The
interested reader is advised to consult for example Heinonen [17], and the references therein for an
enjoyable and extensive account.

Our main result (Theorem 0.2) generalizes the main results of [23] and [9] that are based on
Cannon’s definition of two dimensional extremal length on a graph (cf. [8]). Cannon’s definition
was extended for arbitrary graphs in [23, Section 9]. The definition below is a special case of the one
given in [23, Section 9], and is suitable to the applications of this paper. It is essentially a discrete
version of the definition given by Väisälä. Let G = (V,E) be a finite connected graph. A path
in G is a sequence of vertices {v0, v1, . . . , vk} such that any two successive vertices are connected
by an edge. A nonnegative function m : V → [0,∞) will be called a metric on G. Given a path
α = {v0, v1, . . . , vk} in G and a metric m, we define the m-length of α as

(1.1) lm(α) =
k
∑

i=0

m(vi).

Given A1, A2 ⊂ V , we define their m-distance to be

(1.2) lm(A1, A2) = inf
α

lm(α),

where the infimum is taken over all paths α which join A1 to A2. The volume of the metric m is
defined to be the cube of its 3-norm, i.e

(1.3) vol(m) = ||m||33 =
∑

v∈V
m(v)3,
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and the normalized length of (m,A1, A2) is defined as

(1.4) l̂m =
l3m

vol(m)
.

Finally, the extremal three dimensional length of (G,A1, A2) is defined by

(1.5) λ(G;A1, A2) = sup
m

l̂m,

where the supremum is taken over the set of all metrics m with positive volume. An extremal
metric for (G;A1, A2) is one which realizes this supremum. Observe that for any positive constant

c, lcm = c lm. Hence, l̂m is a conformal invariant in this discrete setting.

An important theorem which asserts the existence and uniqueness (up to scaling) of an extremal
metric was proved independently by Schramm and by Cannon, Floyd and Parry. We now recall the
proof given by Cannon, Floyd and Parry (cf. [9, Theorem 2.2.1]), which applies (with negligible
modifications) to our setting, in order to make this paper self-contained.

Theorem 1.6. There is a unique extremal metric m0 for (G,A1, A2) such that vol(m0) = 1.

Proof. Let N denote the set of natural numbers, and let P denote a nonempty finite subset of
Nn \{0}, where n is the cardinality of V . A path in G corresponds to an element in P . A metric m
on G corresponds to a vector (which we will keep denoting by m) m = (m1,m2, . . . ,mn) ∈ Rn\{0},
with mi ≥ 0 for i = 1, . . . n. The length of a path with respect to the metric m is then given by the
standard scalar product in Rn. Since scaling does not change the extremal length λ(G;A1, A2), we
may restrict m to the subset of vectors of Sn−1 in which each coordinate is nonnegative. Existence
of an extremal metric now follows from the fact that the function which maps a metric m ∈ Sn−1

to lm(A1, A2) is the minimum of a finite number of continuous functions; hence, it is continuous.
It now easily follows that λ(G;A1, A2) is attained and is positive. Uniqueness essentially follows
since (Sn−1, ‖.‖3) is strictly convex. Given m1,m2 distinct nonnegative metrics in Sn−1 such that

(1.7) lm1
(A1, A2) ≥ lm2

(A1, A2) and t ∈ (0, 1), we let

(1.8) v = tm1 + (1− t)m2 (note that 0 < ||v|| < 1).

Then for any path p ∈ P we have

1

||v|| < v, p >=
1

||v|| (t < m1, p > +(1− t) < m2, p >)

≥ 1

||v|| (tlm1
(A1, A2) + (1− t)lm2

(A1, A2))

≥ 1

||v|| lm2
(A1, A2) > lm2

(A1, A2),

(1.9)

which clearly shows that the extremal metric (up to scaling) is unique.
�

Remark 1.10. The geometry of discrete two dimensional extremal metrics was studied extensively
by Parry and later on by Cannon, Floyd and Parry (see for example [8],[9]). We leave the study
of the geometry of three dimensional extremal metrics for the future, since for the purposes of this
paper only the assertion of Theorem 1.6 is needed.
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Remark 1.11. An interesting recent reference by Wood (cf. [29]) explores some of the complications
arising by the two inequivalent ways of carrying the notion of conformal modulus of a ring domain
to a triangulated annulus. The first is by assigning a metric (as we do) to the vertices, and the
second assigned a metric to the edges. It would be interesting to investigate this point in the three
dimensional case.

2. Cube tilings give extremal metrics

In this section, we prove that a cube tiling of a rectangular parallelepiped yields in a natural way
an extremal metric. Our proof is carried out by modifying the main idea of the proof of Lemma
4.1 in [23] to three dimensions. In order to ease the notation, and since we are working with fixed
data, we let lx denote lx(B1, B̄1) in the lemma below.

Lemma 2.1. Let T = {V,E, F ;B1, B̄1, B2, B̄2, B3, B̄3} be as in Theorem 0.2, and suppose that h
and C satisfy all the conditions there. Let G = (V,E) be the 1-skeleton of T , and let s(v) denote
the edge length of the square Cv. Then s is an extremal metric for (G,B1, B̄1).

Proof. Let m be an arbitrary metric on G with positive volume. For every

(2.2) (t, s) ∈ [0,
√
h−1]× [0,

√
h−1],

let

(2.3) γt,s = {v ∈ V : βt,s ∩ Cv 6= ∅} ,where βt,s = (t, s)×R.

βt,s

Figure 2.4. βt,s going through cubes in the tiling.

It is clear that γt,s contains a simple path in G joining B1 to B̄1. Hence, for every (t, s) ∈
[0,

√
h−1]× [0,

√
h−1] we have

(2.5) lm ≤
∑

v∈γt,s
m(v).

We now integrate this inequality over [0,
√
h−1]× [0,

√
h−1] to obtain

(2.6) (
√
h−1)2lm ≤

∫

√
h−1

0

∫

√
h−1

0

∑

v∈γt,s
m(v) dt ds.
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Since C is a tiling and every v ∈ V contributes m(v) to the integral on the right hand side for an
area measure of size s(v)2, the integral can be rearranged to yield the following inequality

(2.7) (
√
h−1)2lm ≤

∑

v∈V
m(v)s(v)2.

We now let s1(v) = s(v)2 for every v ∈ V , and apply the Holder inequality with p = 3 and q = 3/2
to the above inequality to obtain

(2.8) lm ≤ h
∑

v∈V
m(v)s(v)2 ≤ h ||m||3||s1||3/2 = h (

∑

v∈V
m(v)3)1/3(

∑

v∈V
s1(v)

3/2)2/3.

Since (
∑

v∈V s1(v)
3/2)2/3 = (

∑

v∈V s(v)3)2/3 and ||s||33 = vol(R) = 1, we finally obtain that

(2.9) lm ≤ h ||m||3.
It is clear that ls = h and therefore that

(2.10) l̂m =
l3m

||m||33
≤ l3s

||s||33
= l̂s,

which implies that s is extremal.
�

3. Extremal metrics give cube tiling

The main result of this section is Theorem 3.18 which asserts that an extremal metric, under
an extra condition imposed on a triangulation, induces cube tiling. We need several technical
preparations before getting into the proof. Our proof is a generalization of the scheme in the two
dimensional case given by Schramm (cf. [23]).

While a given metric on G is a discrete object in nature, Schramm (cf. [23, Section 5]) defined
a continuous family of metrics which depends on a given curve.

Definition 3.1. Let α be any path in G and let m be any metric on G. For t ≥ 0, we define a one
parameter family of metrics on G by

(3.2) mα,t(v) =

{

m(v) for v ∈ V \ α
m(v) + t for v ∈ α.

In the following, whenever the curve α is specified, we will use the notation mt instead of mα,t.

Lemma 3.3. For the family of metrics mt = mα,t, t ∈ [0,∞) we have

(3.4)
d

dt
(||mt||33)

∣

∣

∣

∣

t=0+
= 3

∑

v∈α
m(v)2,

where α is any curve in G.

Proof. By definition

(3.5) ||mt||33 =
∑

v∈V
mt(v)

3 =
∑

v∈V \α
m(v)3 +

∑

v∈α
(m(v)3 + 3m(v)2t+ 3m(v)t2 + t3).

The assertion of the lemma follows by subtracting ||m||33 from the right hand-side of the equation
above, dividing by t > 0, and taking the limit as t → 0+. �

Let T be a fixed triangulation of a closed topological cube Q, and we let G = (T (0),T (1)) be the
corresponding graph.

For the applications of this paper, we consider the following class of triangulations.
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Definition 3.6. A triangulation of a closed topological cube Q will be said to have the triple
intersection property, if the following property of the extremal metric m0 of (G,B1, B̄1) holds.
There exist a shortest m0-path joining B2 to B̄2 and a shortest m0-path joining B3 to B̄3 which
meet all the shortest m0 paths joining B1 to B̄1.

In the figure below, the red curves correspond to all the shortest paths joining B1 to B̄1, the
yellow curve to shortest paths joining B2 to B̄2, the green curve to a shortest paths joining B3 to
B̄3; all with respect to the m0 metric.

Figure 3.7. Shortest paths in a cube.

Once a triangulation is sufficiently tamed, in the sense described in the following definition, the
triple intersection property will hold. It would be interesting to find if there are other classes of
triangulations that have the triple intersection property (see for example Question 4.1). We keep
the notation of Definition 0.1 and make

Definition 3.8. A triangulation of a closed topological cube Q will be said to have a spine if the
following properties hold. There is one and only one path, called the spine of G, whose interior lies
in B and its endpoints lie on B1, B̄1, respectively. In addition, it is required that every path whose
interior lies in B and joins B2 to B̄2 or B3 to B̄3, intersects the spine of G.

Suppose that T has the triple intersection property, and in addition that t is any nonnegative
number which is smaller than the difference between a second shortest m0 path and a shortest m0

path, which join B1 to B̄1. Consider any γ, δ shortest m0-paths joining B2 to B̄2 and B3 to B̄3 as
in Definition 3.6, respectively. Recall that the metrics mγ,t,mδ,t are obtained by adding t to m0(v)
for each v ∈ γ, v ∈ δ, respectively, and leaving other vertices with their m0 values. Hence, for any t
satisfying the condition above, by considering possible shortest paths for mγ,t,mδ,t, it follows that

(3.10) min{lmγ,t , lmδ,t
} ≥ lm0

+ t,

and therefore that

(3.11) min{ d

dt
(lmγ,t)|t=0+ ,

d

dt
(lmδ,t

)|t=0+} ≥ 1.

Inequality (3.11) is essential for the applications of this paper. It will be used in the lemma below
(Inequality (3.16)) which in turn is essential in the proof of the main theorem. We continue with
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Figure 3.9. Part of a triangulation with a spine.

the following lemma which shows that shortest curves measured with respect to the extremal metric
m0 cannot be too short. This will be used in the proof of Theorem 3.18 to show that cubes arising
from vertices that belong to boundary components of Q intersect appropriate (extended) boundary
components naturally defined by R (for a more precise statement see the proof of Theorem 3.18).

Lemma 3.12. With the notation and hypotheses of Theorem 0.2 and with m0 being the extremal
metric for (G,B1, B̄1) normalized so that vol(m0) = 1, we have

(3.13) min {lm0
(α), lm0

(β)} ≥
√
h−1,

where h = lm0
, α is any shortest m0 path joining B2 to B̄2, and β is any shortest m0 path joining

B3 to B̄3.

Proof. Since m0 is extremal, we have the following inequality for lmt = lmα,t

(3.14) 0 ≥ d

dt

(

(lmt)
3

||mt||33

)

t=0+
=

(

3l2mt

d
dt(lmt)||mt||33 − l3mt

d
dt(||mt||33)

||mt||63

)

t=0+

.

Hence, by applying Lemma 3.3 and the normalization vol(m0) = 1, we must have

(3.15) 0 ≥
(

l2mt

d

dt
(lmt)− l3mt

∑

v∈α
m0(v)

2

)

t=0+

,

which implies, if α satisfies Inequality (3.11), that

(3.16)
∑

v∈α
m0(v)

2 ≥ l−1
m0

= h−1.

Since

(3.17) lm0
(α)2 = (

∑

v∈α
m0(v))

2 ≥
∑

v∈α
m0(v)

2,

and all m0 shortest paths joining B2 to B̄2 have the same length, the assertion of the lemma follows
(an identical argument holds for β).

�

We do not know if inequality (3.11) is necessary for the assertions of Theorem 0.2 to hold. It is
definitely necessary in our proof of the lemma above, as well as in the analogous part of Schramm’s
proof of his main theorem. The triple intersection property guarantees that this inequality holds.
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We now turn into the construction of cube tiling from a normalized extremal metric.

Theorem 3.18. Let T = {V,E, F ;B1, B̄1, B2, B̄2, B3, B̄3} be a triangulation of a topological cube
which has the triple intersection property, and let G = (V,E) be the 1-skeleton of T . Let m be the
extremal metric for (G,B1, B̄1) normalized so that vol(m) = 1. Set

(3.19) h = lm, and let R = [0, h] × [0,
√
h−1]× [0,

√
h−1].

For each v ∈ V let

(3.20) Cv = [x(v)−m(v), x(v)] × [y(v)−m(v), y(v)] × [z(v)−m(v), z(v)],

where x(v) (respectively y(v), z(v)) is the least m-length of paths from B̄2 (respectively, B3, B1) to
v. Then C = {Cv : v ∈ V } is a cube tiling of the rectangular parallelepiped R which satisfies the
contact and boundary constraints (0.3) and (0.4).

We may now turn to the proof of our main theorem.

Proof of Theorem 0.2. The existence of a cube tiling follows from the existence part in Theo-
rem 1.6 and from Theorem 3.18. Uniqueness follows from Lemma 2.1 and the uniqueness part in
Theorem 1.6.

0.2

We now turn to the

Proof of Theorem 3.18. We start by showing that the combinatorics is preserved in the sense of
constraint (0.3). Let (u, v) ∈ T (1) be given. We claim that

(3.21) x(v)−m(v) ≤ x(u) and x(u)−m(u) ≤ x(v).

Suppose that x(v)−m(v) > x(u), and let αu be a shortest m path joining u to B̄2. Then the path
[v, u] ∪ αu which joins v to B̄2 has m-length which is equal to m(v) + x(u) < x(v). This is absurd.
Hence, by applying a symmetric argument to prove the second inequality, we have that

(3.22) [x(v)−m(v), x(v)] ∩ [x(u) −m(u), x(u)] 6= ∅.
The argument above goes through for the coordinates y(v) and z(v) (up to replacing B̄2 with

B3 and B1, respectively). Thus, as claimed

(3.23) Zv ∩ Zu 6= ∅.
We now define several rectangular parallelepipeds in R3 where some are degenerate, and the

remaining are infinite and all of which are naturally associated with R.
Let R1 = {(x, y, z) : min {x, y} ≥ 0, z = 0}, R̂1 = {(x, y, z) : min {x, y} ≥ 0, z ≥ h},

R2 = {(x, y, z) : min {y, z} ≥ 0, x ≥
√
h−1}, R̂2 = {(0, y, z) : min {y, z} ≥ 0}, R3 = {(x, 0, z) :

min {x, z} ≥ 0}, and R̂3 = {(x, y, z) : min {x, z} ≥ 0, y ≥
√
h−1}.

Since the volume of R is equal to one, which by assumption is also equal to vol(m), in order to
prove that C tiles R, it suffices to prove the following

(3.24) R ⊂
⋃

v∈V
Cv,

for then it follows that there are no overlaps of positive volume among the cubes and no cube
extends beyond R. To this end we first prove

Lemma 3.25. With the notation above we have that ∂R is freely homotopic to a constant in

(3.26)
⋃

v∈V
Cv ∪

(

R3 \ int(R)
)

.
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Proof. We begin by constructing a map f : T → ⋃

v∈V Cv. For each v ∈ V , choose f(v) ∈ Cv such

that f(v) ∈ Ri(R̂i) for i = 1, 2, 3, and whenever v ∈ Bi(B̄i). We observe that this may be done in
a consistent way; that is, whenever v is in the intersection of two or three faces among {Bi, B̄i},
i=1, 2, 3, then the corresponding intersection among the {Ri, R̂i} is nonempty.

We endow T with a piecewise linear structure by declaring that each 3-dimensional face (u, v, w, s)

of T (3) is linearly parametrized by a regular tetrahedron, all of its edges have length 1, and that these
parametrizations are compatible along faces. For each 1-dimensional face (u, v) ∈ T (1), let m(u,v)

denote the midpoint of this edge; for each 2-dimensional face (u, v, w) ∈ T (2), let c(u,v,w) denote

the barycentric center of this face, and for each three dimensional tetrahedron (u, v, w, s) ∈ T (3),
let p(u,v,w,s) denote its barycentric center.

Choose f(m(u,v)) to be some point in Cv∩Cu, choose f(c(u,v,w)) to be some point in Cv∩Cu∩Cw,
and choose f(p(u,v,w,s)) to be some point in Cu∩Cv∩Cw∩Cs. The first choice is possible by applying
(3.23), the second and the third choices are possible due to the fact that if three (four) cubes whose
edges are parallel to the coordinate axes have the property that the intersection of any two (three)
of these cubes is nonempty, then the intersection of the three (four) cubes is nonempty. We also

require that f(m(u,v)) ∈ Ri(R̂i) if u, v ∈ Bi(B̄i), and that f(c(u,v,w)) ∈ Ri(R̂i) if u, v, w ∈ Bi(B̄i).
Let T ∗ be the first barycentric subdivision of T , and extend f by requiring it to be affine on

each face of T ∗. It is clear (by construction) that the extension is well defined. Also, since for each
face (s,ms,u, cs,u,v, ps,u,v,w) of T ∗ the four points f(s), f(ms,u), f(cs,u,v), and f(ps,u,v,w)) lie in Cs

which is convex. Hence

(3.27) f(T ) ⊂
⋃

v∈V
Cv.

Let v be any vertex in T (0), then it is clear that ∂T is freely homotopic in T to v. By construction,
f(∂T ) is freely homotopic to ∂R in R3 \ int(R). Note that the last part is justified (in part) due
to the assertions of Lemma 3.12. It is here where we are using in an essential way a lower bound
for the shortest m-curves joining B2 to B̄2 and B3 to B̄3. The assertion of the lemma follows
immediately by defining the constant to be f(v), and composing the two homotopies above.

3.25

We now finish the proof of the theorem by establishing (3.24). We argue by contradiction. First
suppose that there exists a point

(3.28) x ∈ int(R) such that x 6∈
⋃

v∈V
Cv.

Thus, we have the inclusion

(3.29)
⋃

v∈V
Cv ∪

(

R3 \ int(R)
)

→֒ R3 \ {x}.

Hence, by the assertion of the previous lemma, ∂R ≃ S2 is homotopic to a constant in R3 \ {x}.
This is absurd. To end, one treats the case x ∈ ∂R and x 6∈ ⋃v∈V Cv, by arguing that since

⋃

v∈V Cv

is a closed set, there exists a point y ∈ int(R) which is close to x and is not in
⋃

v∈V Cv.

3.18

Remark 3.30. Since at most eight cubes may be tiled in R3 with a nonempty intersection, it is
feasible that some cubes in the tiling provided by Theorem 3.18 will degenerate to points.

Remark 3.31. There are straightforward modifications of our definitions and proofs that allow
generalizations of the results to tiling with rectangular parallelepipeds of specified aspect ratios.
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In the two dimensional case, one such generalization (tiling by rectangles instead of squares) was
observed by Schramm (cf. [23, Section 8]).

Let ω : V → (0,∞) be some assignment of weights to the vertices, and for every metric m : V →
[0,∞) on T define the ωm length of a path α = (v0, v1, . . . , vk) as

lωm(α) =
k
∑

i=0

ω(v)m(vi),

and the ω-volume by

‖m‖3ω =
∑

v∈V
ω(v)m(v)3.

Define the ω-extremal length of T to be

λ(G,B1, B̄1) = sup
m

l3m
‖m‖3ω

,

where the supremum is taken over all metrics of positive area. Then, as before λ(G,B1, B̄1) is a
(discrete) conformal invariant, and a ω-extremal metric always exists, and is unique up to a positive
scaling factor. With this setting, the following holds (we omit the straightforward details of the
proof as well as other possible generalizations).

Theorem 3.32. Let T = {V,E, F ;B1, B̄1, B2, B̄2, B3, B̄3} be a triangulation of a topological cube
which has the triple intersection property, and let G = (V,E) be the 1-skeleton of T . Let ω : V →
(0,∞) be some assignment of weights to the vertices. Let m be the ω-extremal metric for (G,B1, B̄1)
that satisfies ‖m‖3ω = 1. Set

(3.33) h = lm, and let R = [0, h] × [0,
√
h−1]× [0,

√
h−1].

For each v ∈ V let

(3.34) Cv = [x(v) −
√

ω(v)m(v), x(v)] × [y(v)−
√

ω(v)m(v), y(v)] × [z(v) −m(v), z(v)],

where z(v) (respectively, x(v), y(v)) is the least m-length of a path from v to B1 (least ωm-length to
B̄2, B3, respectively). Then C = {Cv : v ∈ V } is a tiling of the rectangular parallelepiped R which
satisfies the contact and boundary constraints (0.3) and (0.4).

4. further questions and research directions

We end this paper by suggesting several future research directions and questions that are
motivated in part by the extensive study done in the two dimensional case (see for example
[4, 11, 8, 9, 10, 12]).

Definition 3.6 specifies a class of triangulations of a closed topological cube for which the asser-
tions of Theorem 0.2 holds.

Question 4.1. Are there larger classes of triangulations which induce a tiling by cubes?

Experience shows that the method of extremal length is very useful when two boundary com-
ponents are chosen (these are the top base and the bottom base in our work). The passage for
3-manifolds without boundary invites further investigations.

Question 4.2. What is the analogue of Theorem 0.2 for a ring space domain, and even more
generally for a genus g handlebody?
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The works in [23] and in [9] contain various algorithms to compute two dimensional extremal
length for a triangulation of a quadrilateral. All of these use the planarity in an essential way. The
following seems to be quite natural to pose.

Question 4.3. Is there an efficient algorithm to compute extremal length for a given T ?

There is a combinatorial notion of a boundary value data which may naturally be associated with
a cube tiling, that is, the induced square tiling of the faces. We propose

Question 4.4. Given a pattern of square tiling of some (perhaps all of) the faces of R, does there
exist a cube tiling of R that induces this pattern?

Wood ([29, 30]) studied how two dimensional discrete extremal length and the associated modulus
changes under various effects of combinatorial operations on a triangulated planar annulus, and
related questions on triangulated Riemann surfaces. Without getting into technical definitions, we
pose the following.

Question 4.5. What are the effects of (for example) refinement of a triangulation on the discrete
three dimensional extremal length? (We do not have a good understanding of this even in the case
discussed in this paper.)

We close this list of questions by one which is motivated by the classical continuous theory of
extremal length. Due to the work of various authors (see the beginning of §1), there are intimate
relations between extremal length and harmonic functions. The work in [18, 19, 20] shows that the
classical theory does not transform word by word to the discrete setting, tiling by cubes which is
induced by harmonic maps is possible, yet more complicated to construct.

Question 4.6. Assume that T is given (for a topological cube or a handlebody), does there exist
a tiling by cubes (or by rectangular parallelepipeds) which is generated by the discrete harmonic
function defined on V and which satisfies suitable combinatorial boundary conditions (such as
Dirichlet or Dirichlet-Neumann)?
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