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ON THE VOLUMES OF COMPLEX
HYPERBOLIC MANIFOLDS

SA’AR HERSONSKY anp FREDERIC PAULIN

1. Introduction. Let M be a complete locally symmetric Riemannian mani-
fold of negative curvature. The main goal of this paper is to give estimates on the
smallest volumes of such M’s. W¢ will do that in the complex case, but qua-
ternionic or octonion analogues of Theorem 5.1 are true.

Fix K € {R,C,H, Ca} the real, complex, or quaternionic field, or the Cayley
octonion algebra, and n > 2 an integer with n = 2 if K = Ca. By a theorem of
E. Cartan, the universal cover of M is isometric to Hg, the hyperbolic space over
K of dimension n. By a theorem of H. C. Wang (see [Wan, Theorem 8.1]), if
(K,n) # (R,2), (R, 3), and of Jorgensen-Thurston (see [Gro2]) if (K,n) = (R, 3),
there does exist a manifold covered by Hg of smallest volume. Moreover, the mini-
mum is obtained by only finitely many manifolds (up to isometry).

The closed real hyperbolic 3-manifold of smallest known volume is the J. Weeks
and S. Matveev-A. Fomenko manifold, having volume =:0.94272. The best-known
lower bound is ~0.00115, due to F. Gehring-G. Martin [GM]. Of related inter-
est is the work of M. Culler-P. Shalen (with P. Wagreich, J. Anderson-R. Canary,
S. Hersonsky) proving, for example, that every real hyperbolic 3-manifold of
smallest volume has first Betti number less than or equal to 2 [CHS]. Note
that the smallest volume of a noncompact real hyperbolic 3-manifold and 3-
orbifold are, respectively, ¢ (C. Adams [Ada]) and 6/24 (R. Meyerhoff [Meyl]),
where ¢ is the volume of the regular ideal real hyperbolic tetrahedra, ¢ ~
1.0149414.

If the real dimension of M is even and if M has finite volume, since Hg is
homogeneous, the Gauss-Bonnet formula (see [Spi, vol. 4, page 443]; as ex-
tended by Harder-Gromov [Gro3, page 84] in the noncompact case; see also
[Muml]; or Hirzebruch proportionality theorem [Hir3, Theorem 22.2.1]) tells
us that there is a constant KK, such that

vol(M) = KKn Xtop(M)

with x,,,(M) the Euler characteristic of M. The exact value of the constant has
been explicitly computed, for instance in [Hir1], giving in the complex case, when
the holomorphic sectional curvature is normalized to be —1 (hence the sectional
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curvature is between —1 and —1/4)
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In particular, the Euler characteristic of a complex hyperbolic n-manifold is pos-
itive if and only if n is even.

If (K,n)=(R,2),(R,4), with kg = —2n and Krg4 = 4n%/3, the smallest
|x10p(M)| is 1 (J. Ratcliffe-S. Tschantz [RaTs] for the last case). In general, find-
ing the smallest volume of M is as difficult as finding the smallest Euler charac-
teristic (in absolute value) of M. For instance, there apparently does not exist
(though see [Hol] for complex hyperbolic surfaces and [Lan]) a general method
for computing the Euler characteristic of arithmetic manifolds. These were first
constructed by [BoHC, Bor]. They are the only known examples of such M with
finite volume, if K # R, and if K = C and n > 3, and the only possible examples if
K # R, C (see {GS]).

Our first main result, also known by P. Pansu (private communication), is the
following theorem.

THEOREM 2.1. The smallest volume (resp., Euler characteristic) of a closed,
complex hyperbolic surface is 8n* (resp., 3).

The number of manifolds having this volume is unknown. We will prove that
any closed, complex hyperbolic surface has Euler characteristic a multiple of 3.
It is unknown which multiple can be obtained. By F. Hirzebruch’s example Y;
[Hirl, page 134], all multiples of 15 are obtained. Indeed, Y; is a closed complex
hyperbolic surface, having by a result of M.-N. Ishida [Ish, Section 6, Example
5] a group G of order 125 acting freely on it with quotient Y;/G having Euler
characteristic 15 and nonzero first cohomology group. Hence the fundamental
group of ¥;/G maps onto a finite group of order n for all n. Taking the asso-
ciated finite covers gives the answer. This argument does not work for the
Mumford example [Mum2] (which is the only known example with minimal
Euler characteristic), since its first cohomology group is 0.

The analogue of Theorem 2.1 in the nonclosed case is unknown. In particular,
we do not know yet whether there exists a finite volume (noncompact) complex
hyperbolic surface of Euler characteristic 1.

Let us denote by Heis,,_; the Heisenberg group of dimension 2n — 1 endowed
with any left invariant Riemannian metric. Let I' be any discrete, cocompact,
torsion-free subgroup of the full group of isometries of Heisz,—1. It is well known
(see, for example, [Gro1], [BK, Theorem 1]) that I" contains a cocompact lattice
of Heis,,_; with index bounded above by a universal constant I,. Note that the
analogue in the Euclidean case is the Bieberbach theorem. For n = 2, we obtain
in Proposition 5.8 that I, = 6.

Our second main result is the following theorem.
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THEOREM 5.1.  Let M be a complex hyperbolic n-manifold of finite volume with
k ends. Then

k
vol(M) > vl

This is a complex-dimensional analogue of [Her1, Theorem 1], which gives a
lower bound for the volume of a real hyperbolic n-manifold with cusps. There is
an analogous theorem for orbifolds, only the constant I, is changing.

J. Parker informed us that it is possible to improve our lower bound k/nl, by
a factor of 2" and even by a factor of 12 for n = 2 and k = 1; see [Par4].

Note that for n =2, this lower bound is weaker than the one given by the
Gauss-Bonnet formula, which predicts that the volume has to be at least 87%/3

(see Section 3). The previous result gives only 1/12 when M has one end. But we
have the immediate following fact.

CoOROLLARY. The number of ends of a finite-volume complex hyperbolic n-
manifold is at most

nKnln Xop(M) .

Since I, < 2(6m)** V1 (see [BK], page 10), one may get an estimate of the
above constant.

The paper is organized as follows. Section 2 is devoted to the proof of Theorem
2.1. The main tool is the proportionality principle of Hirzerbruch mentioned
above. In Section 3, we briefly review well-known notions related to complex
hyperbolic space. In Section 4, we introduce the Ford isometric spheres and
Cygan metric developed by W. Goldman [Gol] and J. Parker [Parl, Par2]. In
Section 5, we treat the noncompact case and prove Theorem 5.1, following the
same strategy as in [Herl]. We use the generalization of the classical Shimizu
inequality (for PSL(2, C)) by [Kam1], [Par3] to the complex hyperbolic case to
find the maximal horoball quotient that we can embed in the manifold. We then
approximate the volume of such a quotient. In Section 5, we prove a general-
ization of the classical Shimizu inequality for complex hyperbolic space, sim-
pliftying computations of [Par3].
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was visiting the Department of Mathematics in Cornell University during the
fall semester of 1995, and concluded while the first author was visiting the Ecole
Normale Supérieure de Lyon on a “Poste rose” CNRS during the summer of
1995. We thank both institutions for their hospitality and support. We also

thank A. Lubotzky, J. Porti, and E. Ghys for their help. We are grateful to J.
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2. The smallest volume of a closed complex hyperbolic surface. This section
is devoted to the proof of our first main result.
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THEOREM 2.1. The smallest volume of a closed complex hyperbolic surface M is
8n2.

Proof. It follows from the introduction that

8n?
vol(M) = = Xtop(M) -
Theorem 2.1 then follows from the next result. ]

PROPOSITION 2.2. The smallest Euler characteristic of a closed complex hyper-
bolic surface M is 3.

Proof. Note that the group of biholomorphisms of the unit ball of C? is pre-
cisely the group of orientation preserving isometries for the Bergmann metric.
Hence the compact, complex surfaces covered by the unit ball of C? are precisely
the closed, compact, oriented, complex hyperbolic surfaces.

First assume M is oriented, with fundamental class [M]. Let ¢, ¢ be the
Chern classes of the compact complex surface M, with <c2, M]> = 20p(M)-
Since M is covered by the unit ball, F. Hirzebruch [Hir2] proved that

2
c] = 3c.

By E. Noether’s formula for closed complex surfaces (see, for instance, [BPYV,
page 20]), we have

¢ + ¢, =0 (mod 12).

Hence, y0,(M) must be a multiple of 3. In the case M is not oriented, we pass to
the oriented double cover M; of M. By the above arguments, ¥op(M1) must be a
multiple of 3, and even; therefore y,,,(M) = 3.

To finish the proof of the proposition, we note that D. Mumford (see [Mum2])
has constructed a closed complex surface, covered by the ball, such that
Xtop(M) =3. a

3. The complex hyperbolic n-space. In this section, we recall some basic facts
regarding complex hyperbolic space. The reader is referred to [CG], [Eps], and
[Gol] for the details and further important results on the subject. We mainly
follow the presentation of isometries of Hg given in [CG].

Let

(1) q=—(20Z1 +2120) +2 - Z

be our chosen hermitian form of signature (n, 1), defined on C**' = C x C x cr
with coordinates (zo,21,2) (where z - Z is the standard hermitian form on C™1).
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Define as usual E* = E* for any m x n matrix E. We denote by

a b »
(2) X=|c d ¢&
a f A

a generic matrix in the unitary group U (g), with the decomposition into blocks
induced by the above splitting of C"*!. Since X preserves the form g, one has

that X~! = Q~1X*Q, where Q is the matrix representing g in the canonical basis.
Therefore

d b -p
3) X'=1:¢ a -
-0 -y A*

As a model for the complex hyperbolic space of dimension n, we take the
Siegel upper half-space model. That is, we have

Hg = {(w;,w)eCxC*"!:2 Rew,; — lw* > 0},
endowed with the Riemannian metric defined by

4
(2 Re wy — [w|?)

(4) ds = 5 ((dw1 — dw - W)(dw; — w - dw)

+ (2 Re w; — |w]?) dw -dw),

which has constant holomorphic sectional curvature —1. Note that for ¢ > 0,
the map ¢,: (wy,w) — (¢t2w;,tw) is an isometry of the Siegel domain, called a
dilatation.

The projective model of the complex hyperbolic n-space is obtained by mapping
H{ into the complex projective space P"(C) via the map (wy, w) — (1, w;, w] (the
standard homogeneous coordinates on P"(C)). The image of H¢ under the above
map corresponds precisely to the open cone defined by g < 0. Hence, PU(q) acts
naturally on H.

It is well known that PU(q) is the group of orientation preserving isometries
of Hg, and that PU(q) acts transitively on the unit tangent bundle of H. Let us
remark that PU(q) is also the group of biholomorphic automorphisms of the
Siegel domain. Although we will barely need it, also note that the Siegel upper
half-space is biholomorphic to the unit ball of C”; hence there is also a ball
model for the complex hyperbolic n-space.
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The space at infinity is defined by

OHL = {(w;,w) e Cx C" ' 2Re wy — jw)* = 0} U {o0},

where oo corresponds to [0, 1,0] in P*(C)). Hence PU(g) acts transitively on dH¢
(via the identification with geodesic rays starting from a basepoint and the space at
infinity).

In H. the subspaces defined by

Hy={(w;,w)eCxC" " :2Rew, — |w’ > 1}

are called horoballs and

O0H; = {(w1,w) e C x C*!':2Rew — |w|2 =t}

are called horospheres. The subgroup in PU(q) which preserves each horosphere is
precisely the subgroup of matrices

1 0 0
P40 1 O
A 0 4

with ve R, { € C"! and A4 € U(n — 1). It is easy to see that the subgroup of U(g)
fixing the point oo is projectively generated by the above group and the dilatations

&:.
Consider the Heisenberg group Heisy,—; which is the set C" 1 x R (with coor-
dinates ({,v)) endowed with the multiplication law (with the usual conventions

of Koranyi, Reimann, Goldman, and Parker)

(5) o) (o)) =+ o+0' +2ImC-T).

There exists a central extension

(6) 0 —» R — Heisy,_; = C" ! =0

making Heis,,_; a simply connected nilpotent Lie group of order 2 and dimension

2n — 1. The center of Heis,,_; is obviously {0} x R.
For g, h € Heis;,_; we denote by [g, h)] the commutator of g and h in Heisy, 1.

LemMa 3.1 For any g, h € Heisy,—1, we have

[gv h] = (07 —4w(ga h))7
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where  is the standard symplectic form on C"'. In particular, [9,H] is a vertical
translation.

Proof. The proof follows easily from the definition of the multiplication in
the Heisenberg group, given in equation (5). O

We will use the identification of Heis;,—; with a subgroup of PU(q) fixing the
point at infinity, defined by

1 0 0
({v) — %lClz—év e
4 0 I

where I is the identity matrix in any dimension. We then have that Heis,,_; is
acting on HE by the formula

om0 = (- T4 3P~ Jowr ).

The action is simply transitive on each horosphere. Elements of the form {0,0) are
called vertical translations.

We will need the following discreteness criterion in Section 5. It is a complex
analogue of the classical Shimizu inequality for discrete subgroups of PSL(2,C),
as generalized by [Her2] and [Wat] to discrete subgroups of the Mébius group
in any dimension. This generalization played a fundamental role in [Herl] to
give volume estimates mentioned before. In [Wat] it was used to give universal
constraints on the radii of isometric spheres in discrete groups on Mbius trans-
formations of all dimensions.

THEOREM 3.2 (S. Kamiya [Kam1, Theorem 3.2], J. Parker [Par3, Proposition
5.2]). Let G be a discrete nonelementary subgroup of U(q). Suppose that

1 0 0
—iv 10
0 0 I
0 0
belongs to G with v 0. Then for every X with X [ 1 | # | 1 ]| in G, |b| = 2/|v].
0 0

4. Cygan metric and isometric spheres. In [Gol] Goldman extends the de-
finition of isometric spheres of Mabius transformations acting on the upper half-
space to the Ford isometric spheres of complex hyperbolic transformations of the
Siegel domain. These spheres and their associated geometric properties have
been extensively used in [Gol], [Parl], [Par2], [Par3]. Since we are using the
hermitian form g, defined in equation (1), which is different from the Goldman-
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Parker one, we will briefly describe the suitably modified isometric sphere. Let
Q = (0,1,0) be a point of C"*! corresponding to the point at infinity.

Definition 4.1. Let X € U(q). Suppose that X does not fix Q. Then the iso-
metric sphere of X is the hypersurface

Ix = {ze Hg: |g(Z,Q)| = 19(Z, X'Q)|},

for any Z € C**! which maps onto z projectively.

The above equality does not depend on the choice of Z. As in the real case, X
maps Ix to Iy and X maps the component of —I:I'E - Ix containing oo to the
component of H{ — Ix-1 not containing oo. L

We will also need the following horospherical coordinates on HYE — {0},
introduced in [GoPa]. Given a point (w;, w), they are defined, using the unique
({,v) in the Heisenberg group such that the image of (z/2,0) by the Heisenberg
element is (wy, w), as follows.

Definition 4.2. The horospherical coordinates of a point (w;,w) € Hg are
(¢,v,t) e C*! x R x R given by

C-——w,u:—ZImw; and t.:ZRewl—lwlz

so that

(lw|2+t)—%v and w={.

SRR

Wi =

In [Parl], an extension of the Cygan metric on Heisy,_1 was carried to H¢
endowed with the horospherical coordinates.

ProrosrTioN 4.3 ([Parl, p. 297]). Let

p1 (1,01, 01), (G202, 12)) = |01 = G + |1 = o] +i(o1 — 02+ 2Im {4 'C_2)|1/2-

Then p, is a distance on H. — {00}, invariant by the left translations and the dila-
tation @, is an homothety of ratio t for this metric. O

This metric defined on HY is an analogue of the Euclidean metric on the
upper halfspace (in R"*!) of the real hyperbolic n-space. With the above, the fol-
lowing proposition gives a characterization of the isometric sphere in terms of
our notations (cf. [Parl, Proposition 4.4]).

ProrosITION 4.4. Let X € U(q) such that XQ # Q. Then the isometric sphere
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is the sphere for the Cygan metric p, with center at X !(00) and radius ry =
2/|bl.

Proof. By equation (3) we have

d b -p\ /0 1
x'o=|¢ a -t |[1]= =b| Lol ~in |
-6 -y A 0 -7 )

where X~1(o00) has horospherical coordinates ({g, vo, 0). Let ({,v,t) € Ix. Choose a
lift

Al

Q

N
]
(SIS
+
Uany NI—D—N —_
|
1L
<

of ({,v,t). An easy computation shows that |g(Z, Q)] = 1 and that

b
2z %) = 2522, 0,01, (6 20,0).

Hence, ({,v,t) belongs to the sphere of radius 1/2/|b| and center X~ (00). O

5. A lower bound for the volume of complex noncompact hyperbolic n-mani-
folds. This section is devoted to the proof of the following theorem.

THEOREM 5.1. Let M be a finite-volume, complex hyperbolic manifold of di-
mension n with k ends. Then

> —
vol(M) o

(see the introduction for the terminology).

Let M be a complex oriented noncompact n-manifold with finite volume.
Then M is the quotient of HE by G, a discrete torsion-free subgroup of
Isom, (Hg) = PU(q). For any group of isometries A of Hg, let us denote by An
the stabilizer of oo in A. It is well known that the ends of M correspond one-to-
one with the conjugacy classes of maximal parabolic subgroups of G. If co is the
fixed point of a parabolic element, then G, preserves every horosphere dH; and
that 0H,/G is compact. Furthermore, there exists to > 0 such that the end of M
corresponding to the maximal parabolic subgroup G has a neighborhood iso-
metric to a cusp H,, /G (see [GaRa] for the above). In particular, vol(M) is
bounded below by vol(Hy,/Gw)- A lower bound for the volume of M is obtained
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in two steps. In the first step, we compute the volume of these cusps. In the sec-
ond one, we will use the generalized Shimizu inequality for discrete subgroups of
isometries of the complex hyperbolic space to get an explicit value for #o at each
parabolic fixed point.

For the volume computation of the cusp, we use the horospherical coordinates
on the Siegel domain as in Definition 4.2. With this set of coordinates, the metric
on HY as defined in equation (4) becomes

() dsg=%((%du—lmc-(Tc)2+%d:2+zdc-E).

Let us endow the Heisenberg group with the left invariant metric defined by
dsh = (Rdvo—Im{-dl)’ +dl - d.

Let dv; be the Euclidean volume form on C"~! = R**"2. Then the volume form of
Heis,,_; is d(voly) = (1/2) dvdv;. Note that the horospherical coordinates iden-
tify Go, with a discrete, torsion-free subgroup of isometries of Heisz,_1. The fol-
lowing lemma is the first step in getting a lower bound for the volume of the cusp.

LeMma 5.2. Let © > 0. Then for any horoball H,, we have

22n—1
(8) vol(H:/Gx) =

nt"

voly (Heisz,-1/Gw) -

Proof. Using equation (7), we have that the volume form in HE can be
written as

N"(dvdt -1 22n=1 gy
(9) d(vol) = (;) (7 > NG de> = T 5 dt g

The volume element in the “slice” H, is given by d(vol)y = (dv/2) dv;. The vol-
ume of the cusp is hence given by

00 22n—1
(10) vol(H;/G) = J <tnT dt) voly(Heisn—_1/Goo)-

T

The assertion follows immediately. a

The following well-known theorem gives a generalization of the Bieberbach
theorem to the Heisenberg group, and is in fact true for any almost flat manifold.

THEOREM 5.3 ([Grol], [BK, Theorem 1.5 (ii)]). Let I be a cocompact discrete
torsion-free subgroup of isometries of Heisy,—1. There exists a universal constant
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I,,, such that T contains a cocompact lattice of index less than or equal to I,.
Moreover,

I” S 2(61!:)(1/2)"("-1) .

We now proceed through a number of statements that will help us find can-
onical cusps that embed in M. Let n: Heis,_; — C"~! be the canonical projec-
tion defined by =n({,v) = (.

ProposITiON 54. Let T be a discrete cocompact subgroup in Heisa,—1. Then
n(T) is a cocompact lattice in C"*.

Proof. By (6) we have
ker(n) =R and Heis,,_;/R = C"!.

We note that I’ n R is a normal subgroup of T, since R is in the center of Heisz,—1.
Therefore, the group

G=T/(nR),

which identifies to n(T"), acts on C"~. It is clear that G acts with bounded quotient
on Heisy,_1 /R and therefore that n(I") acts cocompactly on C*~!. We now show
that G acts discretely on C"!. If not, then the orbit of 0 would accumulate on
itself. That would imply the existence of {y,} e " and {t,} € R such that

yalta) ™t — id.

Since I" is nonabelian (it is quasi-isometric to Heis,, ), we have that T "R # 0.
Hence,

R/(I' nR)

is cocompact. Therefore we can assume that t, € [0, 4] for some real number a. This
will imply up to extracting a subsequence that y, — f € R, which ends the proof.

O

PROPOSITION 5.5. Let T be a cocompact lattice in R*". Let w be the standard
symplectic form on C* = R?". Suppose that for every x,y € T, |o(x, y)| is either 0
or =c/4. Then we have

n

(11) vol(R¥/T) > 5-2;

To prove this, we will need the following fact regarding symplectic forms in
C" =R™.
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LEMMA 5.6. Let 0 be a symplectic form on R™ such that |6(x,y)| is either 0 or
=1 for every x,y € Z*. Then 0 is a multiple of an integer form, and | det 6] > 1.

Proof (J. Porti). Let {e}" be the standard basis of R". For k=1,...,2n,
consider the linear maps T,,: R*" — R, defined by T,,(v) = 0(ex,v). So T,,(Z*) is
a subgroup of R such that, by assumption, every positive element is > 1. Hence
T, (Z*") is a discrete subgroup of R, generated by a; where a; > 1. (Note that we
have T, (Z*") # {0}, since 8 is nondegenerate.)

By the antisymmetry of 6, we obtain that a;/a; is a rational number. This
proves the first assertion.

Using the standard basis and factorizing a, in the kth row, we note that det(6)
can be written as

det(6) = aja; - - - ay, det(W),

where W is an integer matrix. Since 6 is nondegenerate, W is nondegenerate.
Recalling that for every k = 1,...,2n, a; > 1, the second assertion follows. O

Proof of Proposition 5.5. Up to using an homothety of ratio /c/2, we may
assume c=4. Let us choose A4eGL(2n,R) such that T =4 -Z" Set
0(x,y) = w(Ax, Ay). Then 8 is a symplectic form which satisfies all the hypoth-
eses of the previous lemma. We therefore have

vol(R*/T) =det A = Vdet 6 > 1. 0

Let G be the above discrete, torsion-free subgroup of PU(q) of finite covol-
ume. Of crucial importance to us is the ability to find, at each parabolic fixed
point of G, a horoball whose quotient by the stabilizer of the parabolic fixed
point will embed in HZ /G, disjointly from the other chosen quotients of horo-
balls at the inequivalent parabolic fixed points of G. This will enable us in par-
ticular to show that the lower bound on the volume of the manifold is linear
with respect to the number of inequivalent parabolic fixed points, i.€., the num-
ber of cusps. The analogous construction and the disjointness property of the
canonical horoballs has appeared in [Her2] for the n-dimensional real hyper-
bolic space.

Let p be a point in JHL fixed by a parabolic element of G. Choose X € PU(q)
such that X(00) = p. By Lemma 3.1 and because cocompact lattices in Heisz,_;
are nonabelian, we know that (X~!GX), contains nontrivial vertical translations.
Define the canonical horoball at p to be X(H),), where v is the smallest (non-
zero) vertical translation in (X~1GX)_. By the computation of the stabilizer of
00 in Section 3, this does not depend on X. Indeed, let X be another element in
PU(q) sending oo to p. Then X5'X fixes oo; hence the smallest vertical trans-

lation in (X51GXy),, is the image by X5 X of the smallest vertical translation in
(XGXY..
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ProrosiTioN 5.7. Canonical horoballs at distinct parabolic fixed points are
disjoint.

Proof. By conjugating the group and rescaling (using a dilatation) the length
of the shortest (nonzero) vertical translation in the stabilizer of a parabolic fixed
point, we can assume that its length equals 1 and that the fixed point is co. Let

1
U=| -1

0
0
0 I

N1
o = O

be the (unique up to inverse) shortest vertical translation in G.

Let X € PU(q) as in equation (2) such that X(00) # co. Recall that the radius
of the isometric sphere of X is rxy = 1/2/|b| (see Proposition 4.4).

Following the ideas in [Her2, Theorem 2.3, Proposition 3.3], what we need to
prove is that Hy n X - H; = &, whenever B = XUX ! € G. A simple calculation
shows that the modulus of second entry in the first row of B equals 1/2|b|*. (One
also needs to use the second identity of equation (14).) By the generalized Shi-
mizu inequality (see Theorem 3.2), we must have

1/2/b) > 2,
which implies that |b| > 2. Combining the above, we deduce that
(12) ry <1.

By Proposition 4.4, the center of the isometric sphere of X is at X ~!(c0), which has
t = 0 in its horospherical coordinates. For every P € Hy, its t coordinate satisfies
t = 1. By the definition of p, (see Proposition 4.3), it is clear that H; lies inside the
exterior (i.e., the unbounded component) of the isometric sphere of X. As explained
in the discussion following Definition 4.1, X maps the exterior of its isometric
sphere Iy into the interior (ie., the bounded component) of I3!. The isometric
sphere I3! has the same radius as that of Iy; its center is X(oco). Hence, for every
P e Hy, we have

(13) p1(X(P), X(c0)) < 1.

By Proposition 4.3, we must have that the ¢ coordinate of X (P) satisfies t < 1. We
conclude that Hy n X - H; = &. This ends the proof. 0

Remark. The last proposition gives a stronger conclusion than the one
obtained by S. Kamiya [Kam2, Theorem 2.2]); see also J. Parker [Parl, Propo-
sition 5.2]. It not only shows that the “canonical” cusps neigborhoods embed
(this was precisely Kamiya’s result), but furthermore that two such cusps, corre-
sponding to distinct orbits of parabolic fixed points, are disjoint.
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Proof of Theorem 5.1. By the above discussion, if k is the number of ends of

%/G and py,...,pi are pairwise inequivalent representatives of all parabolic
fixed points, then with H; the canonical horoball at p; and G; its stabilizer in G,
one has

Vol(M) > k min{Vol(H;/Gy)}.

Let us assume that one of the parabolic inequivalent fixed points of G is co. Hence
we only have to find a universal lower bound for the volume of Hy,|/Go, Where v
is the smallest (non-0) vertical translation in Geo. Let |v| = ¢ > 0. Then, by Lemma
5.2, we have

2n—1

2
Vol(H./Gx) =

— Vol(Heiszn—1/Goo) -
By Theorem 5.3, we can pass to a finite-index cocompact lattice in G t0 obtain
the following:

2n—1

2
Vol(H.;/Gw) = ] Vol(Heisz,-1/T),

where [T : Goo] < I, and T is cocompact in Heisy,—;. Using the volume form of
Heis,,—;, Lemma 3.1, and Proposition 5.5, we have

. c _ . ch
Vol(Heisy,—1/T) = 3 Vol(C™ ! /n(I)) = Fon 1 -
We combine the above inequalities to obtain the final result

Vol(M) > O

nl,

For n = 2, we can give the precise computation of the best constant I,,. Note
that in that case, the standard symplectic form w on R? is precisely the area form
of R%.

PROPOSITION 5.8. We have I, = 6.

Proof. This proof may be found between the lines in [ShSt]. Note that
Nil = Heis; fibers over R? with fiber R, that the isometries of Nil preserve this
fibration, and that the projection of an isometry of Nil is an isometry of R
Hence (see [Sco2]) the closed 3-manifold M = Nil/T is a Seifert fibered space
with basis a Euclidean 2-orbifold E. Since Nil contains no orientation reversing
isometry (see [Sco2]), the underlying topological space of E is a closed surface,
and the points having nontrivial stabilizers are isolated.
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Let E — E be a finite orbifold covering (of smallest degree) with E a closed flat
surface, and let M — M be the induced covering. Note that 7; M (which is a
subgroup of ;M) is now contained in Nil. One has the following exact commu-
tative diagram.

1 1
y 7!.'1E —_—1

L]

» nO(E) — 1

1 y/ n

—

1 V/

Denote by S(ny,...,n) the 2-orbifold of underlying topological space a surface S,
with k singular points having cyclic stabilizers of orders n;. In the case of a Eucli-
dean 2-orbifold, the flat metric has at such a point a conical singularity of angle
27/n;. (See the classification of Euclidean 2-orbifolds, for example, in [Thu, Section
5.5, Table 2].) Hence if E is orientable, E is the torus, Sz(2,2,2, 2),82(2, 4,4),
$%(3,3,3) or §?(2,3,6). If E is nonorientable, then E is the Klein bottle or P3(2, 2).
Hence if Q is the quotient T'/n; M ~ n%™(E)/n, E, then a case-by-case study shows
that the order of Q is 1,2,4,3,6, 1,2 respectively; hence less than 6 (attained by
§%(2,3,6)). O

Remark. A. Szscepanski told us that the computation of I3 might be possible
using the list of 4-dimensional Euclidean orbifolds in [BBNWZ].

APPENDIX

A generalization of the Shimizu inequality for the complex hyperbolic space.
We found the following discreteness criterion independently of J. Parker (see
[Par3]) to which we refer for applications. Since we are using a different hermitian
form g, our proof is technically much simpler. Let

100
X = (s 1 c*) .
{ 0 I
ProrosiTioN A.1.  Let G be a discrete subgroup of U(q). Suppose that G con-

tains X with (s,{) # (0,0). Then for every X € G — G, we have (with the nota-
tions of equation (2))

12|
Is| +21¢]

Sup{,b|7 ’ﬁl? I’YI’ IA - Il} =
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Note that this statement gives new information only if |{| < 1/2. J. Parker
observed that since this inequality is not homogeneous, conjugating the group G
by a dilatation

=~
o
o

O ==

0 I

gives such an inequality for all k (note that b is changed in kb, B in kB, y in ky, s in
(1/k?)s and { in (1/k){).

Proof. Since XX~! =1 (I being the identity matrix of the corresponding
dimension), one obtains the following set of identities.

(ad+bé—y*6=1
ab+ba—yy=0
cd+dc—96*6=0
(14) \ _

ap+ba—Ay=0

éf+da— A5 =0

L af* + ot — AA* = —I

Define by induction Xo = X, and X1 = Xn XX » 1. By a straightforward com-
putation and (14), we obtain the following relations.

4

1 = Sbudn + duyyl — bal"0n + 1

bas1 = s|bal’ + 2 Tm bryil

Crt1 = Slda)” + 2 1m d,8,L

duyt = Shadn + D65l — Al + 1

(15) 3 i1 = —SbaBy + bal* A — viLBy
vy = —sdyf; + dnl" A} — 6,08,

Uit = Sy + (" 6nPy + dnAnl

Bost = DBy + (" VuBn + badnl

\ An+1 = _Sﬂnﬂ: + ﬁnc*A; - A"Cﬂ; + I

L N -

[



in
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Define t, = sup {|bnl, |Bl; ¥als |4n — I|} and u = |s| + 2|{| # 0. By (15) we have

( |bn+l‘ < /‘tn2

|7n+1| < /‘tnz + |bn“C|

|Basa| < ptn® + 1ballC]

| [Anss = I| < ptn® + 2|B,]1]-

(Note that if { = 0, then we directly have |bny;| < |s]|ba|?, which proves Kamiya’s
result 3.2.) We therefore have

(16) tni1 < itn® + 2|0ty
Suppose that tg < (1 — 2|{})/p . Choose 0 < ¢ < 1 (close to one) such that
pto +2|{| < e.

By induction, it follows from (16) and the above equation that
t, <%

Therefore ¢, tends to 0. If n is big enough, then [4,| < 2, and by (15), we have

dnes =11 < 3ta (s 4 1¢] + ¢I7) sup {1ds — 11,16, = 2], 1)
and that
[0t = 21 < 3ta (s 121+ 1) sup {1dy — 11,18, — €1, 1} + I¢]1dn — 1.

Hence d, converges to 1, and 6, converges to {. By a similar argument, a, con-
verges to 1, ¢, converges to s, and a, converges to {. If ¢y # O, this contradicts the
assumption that the group generated by X, and X is discrete. But if ¢o = 0, then
X fixes the point at infinity and hence belongs to G,.. Hence we must have

1-2[(
u ’

\%

to

which ends the proof. O
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