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APPROXIMATION BY MAXIMAL CUSPS IN
BOUNDARIES OF DEFORMATION SPACES OF

KLEINIAN GROUPS

RICHARD D. CANARY, MARC CULLER, SA’AR HERSONSKY &
PETER B. SHALEN

Abstract
Let M be a compact, oriented, irreducible, atoroidal 3-manifold with
nonempty boundary. Let CC0(M) denote the space of convex cocompact
Kleinian groups uniformizing M . We show that any Kleinian group in the
boundary of CC0(M) whose limit set is the whole sphere can be approx-
imated by maximal cusps. Density of maximal cusps on the boundary of
Schottky space is derived as a corollary. We further show that maximal
cusps are dense in the boundary of the quasiconformal deformation space
of any geometrically finite hyperbolic 3-manifold with connected conformal
boundary.

1. Introduction

Let M be a compact, hyperbolizable 3-manifold whose (nonempty)
boundary consists of surfaces of genus at least two. The space CC0(M)
of convex cocompact uniformizations of M is a component of the in-
terior of the space AH(π1(M)) of all marked hyperbolic 3-manifolds
homotopy equivalent to M . We show that if a hyperbolic 3-manifold in
the boundary of CC0(M) has empty conformal boundary, i.e., all of its
ends are geometrically infinite, then it may be approximated by maximal
cusps. Recall that maximal cusps are geometrically finite hyperbolic 3-
manifolds such that every component of their conformal boundary is a
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thrice-punctured sphere. As a corollary we show that maximal cusps are
dense in the boundary of CC0(M) if the boundary of M is connected.

We view this result as part of a family of recent results which study
the topology of AH(π1(M)). Recall that each component of the interior
of AH(π1(M)) can be identified with CC0(M ′) where M ′ is homotopy
equivalent to M . It is conjectured that AH(π1(M)) is the closure of its
interior. Thurston’s Ending Lamination Conjecture provides a conjec-
tural classification of the manifolds in AH(π1(M)). In this classifica-
tion, geometrically finite hyperbolic 3-manifolds correspond to “rational
points” in the boundary of CC0(M). (Each ending invariant of a geo-
metrically finite hyperbolic 3-manifold is either a point in a Teichmüller
space or a finite leaved geodesic lamination. The finite leaved lamina-
tions are the “rational points” in the space of geodesic laminations.) So
one may think of our corollary as saying that “rational points” are dense
in the boundary of CC0(M) whenever the boundary of M is connected.
Our main result can then be thought of as asserting that, in general, the
“most irrational” points in ∂CC0(M) can be approximated by “rational
points.”

McMullen [32] was the first to study the density of “rational points”
in the boundary of deformation spaces of Kleinian groups. He showed
that “maximal cusps” are dense in the boundary of any Bers slice of
quasifuchsian space. Recall that if S is a closed surface then quasifuch-
sian space QF (S) is the space of convex cocompact uniformizations of
S × I. A Bers slice of QF (S) consists of convex cocompact uniformiza-
tions of S × I such that the component of the conformal boundary
corresponding to S × {0} has a fixed conformal structure. In his setting
a “maximal cusp” is a geometrically finite manifold in the boundary
of QF (S) whose conformal boundary consists of one copy of S and a
collection of thrice-punctured spheres. He later claimed that maximal
cusps, in the sense of this paper, are dense in the boundary of Schottky
space, i.e., the space of convex cocompact uniformizations of a handle-
body. This result was used by Culler, Shalen and their coauthors in a
series of papers which studied the relationship between the topology of
a hyperbolic 3-manifold and its volume. We make central use of the
analytical machinery developed by McMullen [32].

We now develop the notation needed to state our results precisely.
Let M be a compact, oriented, irreducible, atoroidal 3-manifold with
nonempty boundary. If ρ : π1(M) → PSL2(C) is any discrete, faithful
representation we let Ω(ρ) denote the domain of discontinuity of the
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action of ρ(π1(M)) on the Riemann sphere Ĉ. Then

Nρ = (H3 ∪ Ω(ρ))/ρ(π1(M))

is a 3-manifold with boundary. The interior Nρ = H3/ρ(π1(M)) of Nρ

inherits the structure of a hyperbolic 3-manifold, while the boundary
of Nρ, which is denoted ∂cNρ and called the conformal boundary, has a
natural conformal structure induced from that on the sphere at infinity.
We will identify π1(Nρ) with the subgroup ρ(π1(M)) of PSL2(C).

A discrete, faithful representation ρ : π1(M) → PSL2(C) is called a
convex cocompact uniformization of M if there exists an orientation-
preserving homeomorphism h : M → Nρ such that the two isomor-
phisms h∗ : π1(M) → π1(Nρ) and ρ : π1(M) → ρ(π1(M)) = π1(Nρ)
differ by inner automorphisms. In this situation, if we view h∗ as a
representation of π1(M) into PSL2(C) then ρ and h∗ are conjugate
representations. We shall indicate this by writing [h∗] = [ρ], and in
general we shall use the notation [ρ] to denote the conjugacy class of
a representation ρ. Note that if ∂M contains no tori, then Thurston’s
Uniformization Theorem implies that there exists a convex cocompact
uniformization of M .

Let CC0(M) denote the set of conjugacy classes of convex cocompact
uniformizations of M . The space CC0(M) naturally sits inside the set
AH(π1(M)) of conjugacy classes of discrete faithful representations of
π1(M)) into PSL2(C). (We give AH(π1(M)) the quotient topology
induced by the compact-open topology on the space of discrete faithful
representations.) Marden [28] showed that CC0(M) is an open subset
of AH(π1(M)). Bers, Kra and Maskit (see [7]) showed that CC0(M)
may be parameterized as the quotient T (∂M)/ Mod0(M) where T (∂M)
is the Teichmüller space of all (marked) conformal structures on M and
Mod0(M) is the group of all isotopy classes of homeomorphisms of M
which are homotopic to the identity.

A collection C of disjoint simple closed curves in a surface S is called
a pants decomposition of S if each component of S − C is an open pair
of pants. A discrete, faithful representation ρ : π1(M) → PSL2(C) is
called a maximally cusped uniformization of M if there exists a pants
decomposition C of ∂M and an orientation-preserving homeomorphism
h : M − C → Nρ such that [h∗] = [ρ]. The conjugacy class of a
maximally cusped uniformization of M will be called a maximal cusp for
M . Every maximally cusped uniformization of M lies in the boundary
of CC0(M) (see [27, Theorem III] and [35, Theorem 5.1].)

The following theorem is the main result of the paper.
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Theorem 6.1 (Approximations by maximal cusps). Let M be a
compact, oriented, irreducible, atoroidal 3-manifold whose boundary is
nonempty and contains no tori. If [ρ] is an element of ∂CC0(M) such
that Ω(ρ) = ∅, then [ρ] is the limit of a sequence of maximal cusps in
∂CC0(M).

If Hg is a handlebody of genus g, then CC0(Hg) is known as Schottky
space. We may combine our main theorem with Marden’s observation
that there is a dense subset in the boundary of Schottky space con-
sisting of conjugacy classes of representations with empty domain of
discontinuity to obtain the following immediate corollary.

Corollary 15.1. If Hg is a handlebody of genus g ≥ 2, then maximal
cusps are dense in the boundary of the Schottky space CC0(Hg).

One may combine the main theorem with work of Anderson, Canary,
Kapovich, Minsky and Sullivan to obtain the following generalization of
Corollary 15.1.

Corollary 15.3. Let M be a compact, oriented, irreducible, atoro-
idal 3-manifold with (nonempty) connected boundary which is not a
torus. Then maximal cusps are dense in the boundary of CC0(M).

In a final section, we notice that the same techniques may be used
to obtain an analogue of our main theorem in the setting of geomet-
rically finite uniformizations of pared 3-manifolds. In particular, we
will generalize our results to the setting where M is allowed to have
toroidal boundary components. We then combine this result with work
of Anderson, Canary, Evans, Kapovich and Sullivan, to show that max-
imal cusps are dense in the boundary of the quasiconformal deformation
space of any geometrically finite hyperbolic 3-manifold with connected
conformal boundary.

The outline of a proof of Corollary 15.1 was provided to the authors
of the present paper by Curt McMullen. The result was quoted as The-
orem 8.9 of [16] and was used in the proof of Theorem 8.2 of [16]. The
latter theorem was also quoted and used on page 23 of [14]. Likewise,
Corollary 15.1 was quoted in the discussion beginning Section 5 of [3]
and was used in the proof of Theorem 5.2 of [3]. These applications
of Corollary 15.1 were crucial to the proofs of the main results of [16],
[3] and [14], and therefore to the results of the subsequent papers [17],
[18], [19], [20]. In these papers, the authors obtain lower bounds for
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the volume of a hyperbolic 3-manifold under a variety of topological
restrictions. No proof of Corollary 15.1 has appeared to date, and it is
hoped that the present paper will fill the resulting gap in the literature.

Acknowledgments. We would like to record our gratitude to
Curt McMullen both for assuring us that Corollary 15.1 is true and for
showing us the way to the proof, from which we were led to the proof
of the more general Theorem 6.1. We are grateful to Howard Masur for
providing us with our first correct proof of Lemma 2.1. The authors
also wish to thank Ken Bromberg, J. Kahn, J.H. Hubbard and Frédéric
Paulin for many enjoyable and helpful discussions. S. Hersonsky would
like to thank the Institut des Hautes Etudes Scientifiques, where he did
part of his work on this paper.

2. Background material and outline

In this section, we survey some of the basic material from Teich-
müller theory and the deformation theory of Kleinian groups which will
be used throughout the paper. We also explain the construction of a
metric on the space AH(π1(M)) of conjugacy classes of discrete faithful
representations which will be used in the proof. We finish by giving a
brief outline of the argument.

We recommend the books of Gardiner [23] and Imayoshi-Taniguchi
[24] as sources for Teichmüller theory and the papers by Bers [7] and
Canary-McCullough [12] as references for the deformation theory of
Kleinian groups.

2.1 Beltrami differentials and quadratic differentials

Let X be a finite type Riemann surface. A Beltrami differential µ is a
differential of type (−1, 1) on X, i.e., it is given in a local coordinate z

as f(z)dz
dz , where f is a measurable function. If w(z) is another local

coordinate then µ is written as g(w)dw
dw where g(w(z)) = f(z)dw

dz /dw
dz .

The function f depends on the choice of coordinate, but the modulus
|µ|(z) = |f(z)| of f is invariant under change of coordinates and hence
is a globally defined real-valued measurable function on X. Let B(X)
denote the space of bounded Beltrami differentials on X with L∞-norm

‖µ‖ = sup
x∈X

|µ|(x)

and let B1(X) ⊂ B(X) denote the open unit ball in B(X).
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The Teichmüller space T (X) of all marked Riemann surfaces
which are quasi-conformally homeomorphic to X can be identified with
B1(X)/Q0(X), where Q0(X) denotes the group of all quasiconformal
self-homeomorphisms of X that are homotopic to the identity. The
marked Riemann surface X is the image of the origin under this quotient
map, and will be referred to as the basepoint of T (X). The Teichmüller
space T (X) can also be thought of as the space of pairs (Y, f) where Y
is a Riemann surface and f : X → Y is a quasiconformal homeomor-
phism, and where two pairs (Y1, f1) and (Y2, f2) are equivalent if there
exists a conformal map g : Y1 → Y2 which is homotopic to f2 ◦f−1

1 . The
pair (Y, f) can be identified with the equivalence class of the Beltrami
differential (fz/fz)dz

dz of f .
Let B0(X) denote the the orbit of 0 ∈ B1(X) under Q0(X). Ele-

ments of B0(X) are called trivial Beltrami differentials, since they are
the Beltrami differentials of quasiconformal homeomorphisms in Q0(X).
We let Φ : B1(X) → B1(X)/Q0(X) be the projection map. In this sit-
uation, the tangent space to the image of the origin in the quotient
T (X) = B1(X)/Q0(X) can be identified with the vector space quotient
of the tangent space of B1(X) at 0 by the tangent space to B0(X) at 0.

One may use quadratic differentials to define a norm on the tangent
space of T (X). A quadratic differential φ is given locally as f(z)dz2. If
w(z) is another local coordinate then φ can be written as g(w)dw2 where
g(w(z)) = f(z)(dw

dz )2. The modulus |φ| of a quadratic differential is a
nonnegative real-valued 2-form on the Riemann surface X and thus has
a well-defined integral over X. We obtain a finite dimensional normed
linear space by defining Q(X) to be space of holomorphic quadratic
differentials φ on X such that

‖φ‖ =
∫

X
|φ| < ∞.

Suppose that µ is a Beltrami differential on X and that φ is a
quadratic differential on X given respectively in a local coordinate z
as µ = f(z)dz

dz and φ = g(z)dz2. The product of µ and φ, which is given
in the local coordinate z as φµ = f(z)g(z)dzdz, is a complex valued
2-form on X and hence has a well-defined integral over X. We may
therefore define a real-valued bilinear pairing between B(X) and Q(X)
by the formula

〈φ, µ〉 = Re
∫

X
φµ.(1)
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Let N(X) denote the set of all µ ∈ B(X) such that 〈φ, µ〉 = 0 for
all φ ∈ Q(X). (These are called infinitesimally trivial Beltrami differ-
entials.) It can be shown that N(X) is equal to the tangent space of
B0(X) at the origin and that the tangent space to the Teichmüller space
T (X) at the base point can be identified with the quotient B(X)/N(X).
We abuse notation by identifying tangent vectors at the origin of B1(X)
with elements of the linear space B(X). Associated to such a tangent
vector µ ∈ B(X) at the origin of B1(X) there is then a tangent vec-
tor DΦ(µ) to T (X) at the base point of the Teichmüller space. The
Teichmüller metric is a Finsler metric with infinitesimal form

‖DΦ(µ)‖ = sup{〈φ, µ〉 | φ ∈ Q(X), ‖φ‖ = 1}.(2)

If Y is a marked Riemann surface which is quasiconformally homeo-
morphic to X, we may view Y as a point of T (X). There is a canonical
identification of the tangent space of T (X) at Y with the tangent space
of T (Y ) at its basepoint. This gives rise to a norm on the tangent space
at any point of T (X) which is the infinitesimal form of the Teichmüller
metric on T (X).

2.2 Controlled pinching

It will be important for us to know that one can pinch the length of
a curve of length less than L in half in a controlled manner. In par-
ticular, the pinching is accomplished by a bounded length deformation
in Teichmuller space such that the tangent vector to the path at each
point is represented by a unit norm Beltrami differential supported on
the 2L-thin part of the surface. Although this fact is well-known in
Teichmüller theory we will provide an outline of the proof.

If X is a finite type Riemann surface which is not homeomorphic to
a sphere, a torus or an annulus, then the conformal structure on X is
compatible with a unique hyperbolic metric, called the Poincaré metric.
If x is a point of X then we define injX(x) to be half the length of the
shortest nontrivial loop through x, measured in the Poincaré metric.
The L-thin part of X is the set of points on which injX(x) ≤ L. We say
that x is in the L-thin part associated to a curve γ on X, if there exists
a nontrivial loop based at x which is homotopic to γ and has length at
most 2L.

If γ is a simple closed curve on a finite area hyperbolic surface X we
will write lX(γ) for the length of the closed geodesic in the homotopy
class of γ.
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We remind the reader that the Euclidean annulus

A(R) = {z : 1 < |z| < R}

has conformal modulus mod(A) = log R. Notice that A(R) is confor-
mally isomorphic to a right cylinder of height mod(A)/2π and of cir-
cumference 1. Since any annulus in a Riemann surface is conformal to
A(R) for some (unique) R, any such annulus has a well-defined modulus.

If β : [0, B] → T (X) is a differentiable path and β(t) = (Xt, gt),
then for each t ∈ [0, B] there is a map Φt : B1(Xt) → T (Xt) such that
Φt(0) = β(t). The tangent vector β′(t) then lives in DΦt(B(Xt)) which
may be identified with the tangent space to T (X) at β(t).

Lemma 2.1. Let L0 > 0 be given, let X be a finite area hyperbolic
surface, and let γ be a simple closed geodesic on X of length L ≤ L0.
There exists a positive number B depending only on L0 and a differ-
entiable path β : [0, B] → T (X), with β(t) = (Xt, gt), such that the
following conditions hold:

1. β(0) = (X, id),

2. for all t ∈ [0, B] we have lXt(gt(γ)) ≤ L,

3. β′(t) = DΦt(µt), ‖µt‖ ≤ 1 and the support of µt is contained in
the 2L-thin part associated to the curve gt(γ), and

4. lXB (gB(γ)) ≤ L
2 .

Recall that ‖µt‖ denotes the L∞-norm of |µt|. Thus, applying Equa-
tion (2) in Section 2.1, we see that ‖µt‖ ≤ 1 implies that ‖β′(t)‖ ≤ 1,
so β([0, B]) has length at most B in T (X).

Proof. One may argue as in the proof of Proposition 2 in Maskit
[31] to show that there is a constant a > 0 (depending only on L0)
such that if X is a finite area hyperbolic surface and γ is a geodesic of
length L ≤ L0, then there is an annulus A contained within the 2L-thin
part associated to γ such that γ is a core curve of A and mod(A) ≥ a

L .
Moreover, Proposition 1 of [31] shows that if A′ is an incompressible
annulus in a finite area hyperbolic surface with modulus at least 4π2

L ,
then the geodesic homotopic to the core curve of A′ has length at most
L
2 . Set

B =
1
2

log
(

4π2

a

)
.
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Let A be the annulus provided by the previous paragraph and let
m = mod(A). We may conformally identify A with the planar annulus

{1 < |z| < em}

and let
At = {1 < |z| < eme2t}.

Let ft : A → At be the Teichmüller map

ft(z) = z|z|e2t−1

with associated Beltrami differential µt. The resulting path β̂ : [0,∞) →
T (A) is a unit speed geodesic in T (A) and each tangent vector β̂′(t) is
represented by a unit norm Beltrami differential supported on At.

Extend each µt to a Beltrami differential µ̂t on X by setting µ̂t equal
to 0 on X − A. Then one may use the Measurable Riemann Mapping
Theorem to produce a path of quasiconformal maps {gt : X → Xt} and
hence a path β : [0, B] → T (X). For each t in the interval [0, B] the
annulus gt(A), is conformally equivalent to At and the tangent vector
β′(t) is represented by a unit-norm Beltrami differential supported on
gt(A). Moreover, gB(A) has modulus at least 4π2

L , so lXB (gB(γ)) ≤ L
2

as required.
It remains to check that for all t ∈ [0, B] we have that lXt(gt(γ)) ≤ L

and that gt(A) is contained in the 2L-thin part of Xt. Notice that Xt

is conformally equivalent to the surface obtained by cutting X along γ
and inserting a Euclidean annulus Et whose core geodesic has length L.
The conformal equivalence maps the annulus gt(A) to the annulus A′

t

which is obtained by cutting A along γ and inserting Et.
It follows from Proposition 2.2 of Tanigawa [40] (see also the dis-

cussion preceding Theorem 3.1 of McMullen [33]) that the hyperbolic
metric on Xt is (pointwise) bounded from above by the singular metric
which agrees with the hyperbolic metric on X and with the Euclidean
metric on Et. Since A is contained in the 2L-thin part of X associated
to γ, we see immediately gt(A) is contained in the 2L-thin part of Xt

associated to gt(γ) and that lXt(gt(γ)) ≤ L. q.e.d.

2.3 The deformation space CC0(M)

Let M be a compact, oriented, irreducible, atoroidal 3-manifold with
nonempty boundary and no toroidal boundary components. Let [ρ0]
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denote a fixed conjugacy class in CC0(M). Then there exists a home-
omorphism h : M → Nρ0 such that [h∗] = [ρ0] and ∂cNρ0 is a Rie-
mann surface homeomorphic to ∂M . If [ρ] is another conjugacy class
in CC0(M) then Marden’s Isomorphism theorem [28] implies that there
exists a quasiconformal map φ̃ : Ĉ → Ĉ such that φ̃ρ0(g)φ̃−1 = ρ(g)
for all g ∈ π1(M). The map φ̃ descends to a quasiconformal map
φ : ∂cNρ0 → ∂cNρ and φ extends to a homeomorphism φ : Nρ0 → Nρ

such that [(φ ◦ h)∗] = [ρ]. In particular, (∂cNρ,φ) may be thought of
as a point in the Teichmüller space T (∂cNρ0) of all (marked) Riemann
surfaces homeomorphic to ∂cNρ0 . However, if we precompose φ by a
quasiconformal self-map ψ of ∂cNρ0 which extends to a homeomorphism
of Nρ0 that is homotopic to the identity, then (∂cNρ,φ ◦ ψ) is another
point in T (∂cNρ0) which is naturally associated to ρ. Using work of
Bers, Kra and Maskit (see Bers [7] or [12]) we may identify CC0(M)
with T (∂cNρ0)/ Mod0(ρ0), where Mod0(ρ0) denotes the group of iso-
topy classes of quasiconformal automorphisms of ∂cNρ0 which extend
to maps of Nρ0 that are homotopic to the identity. Maskit [30] showed
that Mod0(ρ0) acts freely and properly discontinuously on T (∂cNρ0).

Since ∂cNρ0 is homeomorphic to ∂M we may identify T (∂cNρ0) with
T (∂M) and Mod0(ρ0) with the group Mod0(M) of isotopy classes of
homeomorphisms of M that are homotopic to the identity. The space
T (∂M) may be identified with the set of equivalence classes of pairs
(Y, f), where Y is a Riemann surface, f : ∂M → Y is an orientation-
preserving homeomorphism, and two pairs (Y1,f1) and (Y2,f2) are equiv-
alent if there exists a conformal map g : Y1 → Y2 that is homotopic to
f2 ◦ f−1

1 . For the remainder of the paper, we will identify CC0(M) with
T (∂M)/ Mod0(M) and let qM : T (∂M) → CC0(M) denote the quotient
map. With this identification, if (Y, f) ∈ T (∂M) and qM (Y, f) = [ρ],
then one may identify ∂cNρ with the Riemann surface Y and f extends
to a homeomorphism f : M → Nρ such that [f∗] = [ρ].

If a is any element of π1(M), then there is a natural map Υa :
CC0(M) → CC0(S1 × D2) given by Υa([ρ]) = [ρa] where ρa denotes
the restriction of ρ to the cyclic subgroup 〈a〉 of π1(M) generated by a.
We can identify CC0(S1 ×D2) with T (T 2)/ Mod0(S1 ×D2). Explicitly,
T (T 2) can be identified with H2 so that Mod0(S1 × D2) is generated
by z /→ z + 1. Let qT : T (T 2) → CC0(S1 × D2) denote the quotient
map. Notice that, since T (∂M) is simply connected, Υa lifts to a map
Υ̃a : T (∂M) → T (T 2).

Since Mod0(M) and Mod0(S1 × D2) act freely, properly discontin-
uously and by isometries (of the Teichmüller metrics) on T (∂M) and
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T (T 2), both CC0(M) and CC0(S1 × D2) inherit the structure of a
smooth manifold with a quotient Teichmüller metric. It follows that
if qM (Y, f) = [ρ] then we have an identification between the tangent
spaces T[ρ](CC0(M)) and T(Y,f)(T (∂M)) as well as between the tangent
spaces TΥa([ρ])(CC0(S1 ×D2)) and TΥ̃a(Y,f)(T (T 2)). Moreover, we have
a projection map Φ = qM ◦Φ from B1(Y ) → CC0(M) whose derivative,
at the basepoint, agrees with DΦ once we have identified T[ρ](CC0(M))
with T(Y,f)(T (∂M)).

If we set Γ = ρ(π1(M)), then we may identify B1(Y ) with the
space B1(Ω(Γ), Γ) of Γ-invariant Beltrami differentials on Ω(Γ). (A
Beltrami differential µ̃ on Ω(Γ) is said to be Γ-invariant if µ̃(γ(z)) =
µ̃(z)

(
γ′(z) / γ′(z)

)
for all γ ∈ Γ, in which case µ̃ is a lift of a Bel-

trami differential µ on Y .) Similarly, we may identify B1(Υ̃a(Y )) with
B1(Ω(〈ρ(a)〉), 〈ρ(a)〉). The map Υ̃a lifts again to a map

Υ̂a : B1(Ω(Γ), Γ) → B1(Ω(〈ρ(a)〉), 〈ρ(a)〉)

which is simply the inclusion map. (Formally, if µ ∈ B1(Ω(Γ), Γ), then
Υ̂a(µ) is obtained from µ by setting Υ̂a(µ) equal to 0 at any point in
Ω(〈ρ(a)〉) − Ω(Γ).) We thus have the following commutative diagram:

B1(Y ) Υ̂a→ B1(Υ̃a(Y ))
Φ ↓ Φ ↓

T (∂M) Υ̃a→ T (T 2)
qM ↓ qT ↓
CC0(M) Υa→ CC0(S1 × D2).

Taking derivatives we obtain:

B(Y ) DΥ̂a→ B(Υ̃a(Y ))
DΦ ↓ DΦ ↓

T(Y,f)(T (∂M)) DΥ̃a→ TΥ̃a(Y,f)(T (T 2))
DqM ↓ DqT ↓

T[ρ](CC0(M)) DΥa→ TΥa([ρ])(CC0(S1 × D2)).

.

Notice that DΥ̂a : B(Y ) → B(Υ̃a(Y )) is simply the inclusion map
from B(Ω(Γ), Γ) to B(Ω(〈ρ(a)〉), 〈ρ(a)〉), since it is the derivative of the
inclusion map. In particular, if DΦ(µ) ∈ TY (T (∂M)) and µ̃ is a lift of
µ to Ω(Γ), then µ̃ is also the lift of a representative of DΥ̃a(DΦ(µ)) to
Ω(〈ρ(a)〉).
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2.4 Pinchable collections of curves

If M is a compact, oriented, atoroidal, irreducible 3-manifold with no
toroidal boundary components, then a disjoint collection of non-parallel
simple closed curves C in ∂M is said to be pinchable if every curve in C
is homotopically nontrivial in M and if there is no essential annulus in
M both of whose boundary components are homotopic in ∂M to curves
in C.

It is a consequence of Thurston’s Uniformization Theorem (see Mor-
gan [34]) that if C is any pinchable pants decomposition of ∂M , then
there exists a maximal cusp [ρ] such that M − C is homeomorphic to
Nρ by an orientation-preserving homeomorphism h : M −C → Nρ with
[h∗] = [ρ]. Keen, Maskit and Series [27] established that the maximal
cusp [ρ] is uniquely determined by the free homotopy classes (in M) of
the curves in C.

If ρ ∈ CC0(M) and C = {c1, . . . , cm} is a pinchable collection of
curves in ∂cNρ then each element of C is associated to a conjugacy
class of hyperbolic elements of ρ(π1(M)), since each element of C is
homotopically nontrivial in Nρ and every nontrivial element of ρ(π1(M))
is hyperbolic. The conjugacy classes are distinct, since otherwise there
would be an essential annulus in Nρ joining distinct elements of C.
Each element in the conjugacy class determined by an element of C is
primitive, since otherwise there would be an essential annulus in Nρ

with both boundary components parallel to a single component of C.

2.5 A metric on AH(π1(M))

Proposition 2.2 below assures us that we may find a finite collection of
elements of π1(M) whose squared traces give rise to a proper embedding
of AH(π1(M)) into Cm for some m. We may then use this embedding
to construct a metric on AH(π1(M)).

Let G be a finitely generated group. If we let τg(ρ) denote the
square of the trace of ρ(g), then τg is a well defined continuous function
on Hom(G, PSL2(C)). (Notice that although the trace of an element
of PSL2(C) is not well-defined, its square is well-defined.) Since τg
is invariant under conjugation, it descends to a continuous function
τ g : AH(G) → C.

Proposition 2.2. Let M be a compact, orientable, irreducible,
atoroidal 3-manifold whose boundary has a non-torus component. Sup-
pose that F is a finite set of primitive conjugacy classes in π1(M). Then
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there exists a finite set {a1, . . . , am} of primitive elements of π1(M) such
that:

1. no a±1
i belongs to a conjugacy class in F ;

2. if [ρ1], [ρ2] ∈ AH(π1(M)) and τai([ρ1]) = τai([ρ2]) for all i =
1, . . . , m, then [ρ1] = [ρ2]; and

3. given any K > 0, the set
{

[ρ] ∈ AH(π1(M))
∣∣∣∣

m∑

i=1

|τai(ρ)| ≤ K

}

is compact.

If A = {a1, . . . , am} is a collection of primitive elements of π1(M)
which satisfies Conditions (2) and (3) of Proposition 2.2 then we call A
an allowable collection of test elements. Then τ : AH(π1(M)) → Cm

given by τ(ρ) = (τai(ρ)) is a proper embedding of AH(π1(M)) into Cm.
We let dA be the metric on AH(π1(M)) which it inherits as a subset of
Cm. Explicitly,

dA([ρ1], [ρ2]) =

√√√√
m∑

i=1

|τai([ρ1]) − τai([ρ2])|
2.

The following three lemmas will be needed for the proof of Proposi-
tion 2.2. Our first lemma will be used to obtain Property (1).

Lemma 2.3. Let G be a finitely generated group which admits a
homomorphism onto Z ⊕ Z. Let F be a finite set of conjugacy classes
in G. Then there is a finite set {h1, . . . , hn} of generators of the group
G with the property that no power of any element of a conjugacy class
in F can be written as a nonempty positive word in h1, . . . , hn.

Proof. We may assume without loss of generality that F−1 = F . We
fix a generating set {g1, . . . , gn} for G and a surjective homomorphism
φ : G → Z ⊕ Z. We set vi = φ(gi) ∈ Z ⊕ Z for i = 1, . . . , n. Since the
homomorphism φ is surjective, the elements v1, . . . , vn generate Z ⊕ Z.
If we regard Z ⊕ Z as a lattice in R2, it follows that two of the vectors
vi, which after re-indexing we may take to be v1 and v2, are linearly
independent in R2. Hence if Lj denotes the linear subspace of R2

spanned by v1 + jv2 for each j ≥ 0, the Lj are all 1-dimensional and
pairwise distinct.
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We fix a finite set S ⊂ Z ⊕ Z − {0} ⊂ R2 − {0} such that φ maps
every conjugacy class in F to an element of S ∪ {0}. Since the Li are
distinct 1-dimensional subspaces of R2 and 0 2∈ S, there is an integer
m ≥ 0 such that Lm ∩ S = ∅. We set L = Lm. We also set d1 = g1gm

2 ,
and observe that {d1, g2, . . . , gn} is a generating set for G, and that
w1 = φ(d1) = v1 + mv2 is a nonzero vector in L. Let r ⊂ L denote
the open ray from the origin which contains w1. Since the finite set S
is disjoint from L, there is an open neighborhood V of r in R2, whose
frontier is the union of two rays from the origin, such that S ∩ V = ∅.
Note that 0 2∈ V .

For i = 2, . . . , n and for each k ≥ 0, let us set d(k)
i = gidk

1, and
w(k)

i = φ(d(k)
i ) = vi + kw1. For each k ≥ 0 the set {d1, d

(k)
2 , . . . , d(k)

n }
generates G. We have

w(k)
i

k
=

vi

k
+ w1 → w1 ∈ r

as k → ∞, and since V is invariant under positive dilatations it follows
that for large enough k we have w(k)

i ∈ V for i = 2, . . . , n. Fixing such a
k, we claim that the generating set {d1, d

(k)
2 , . . . , d(k)

n } has the property
stated in the lemma, that no power of any element of a conjugacy class
in F can be written as a nonempty positive word in d1, d

(k)
2 , . . . , d(k)

n .
Indeed, suppose to the contrary that for some element a ∈ G whose

conjugacy class belongs to F , some power of a, say ah with h ∈ Z,
can be written as a nonempty positive word in d1, d

(k)
2 , . . . , d(k)

n . Since
F−1 = F we may take h to be nonnegative. Set z = φ(a). Then
hz = φ(ah) is a linear combination, with strictly positive coefficients,
of some nonempty subset of {w1, w

(k)
2 , . . . , w(k)

n } ⊂ V . As V is clearly
invariant under positive linear combinations it follows that hz ∈ V and
hence that z ∈ V . But since the conjugacy class of a belongs to F we
have z ∈ S ∪ {0}, and the latter set is disjoint from V . q.e.d.

In the remainder of the section we will make use of the theory of
the SL2(C)-character variety of G, which is presented in Section 1 of
[15]. Let R(G) = Hom(G, SL2(C)). For each g ∈ G let tg : R(G) → C
be the function defined by tg(ρ) = trace ρ(g). Let T denote the ring
generated by all functions of the form tg for g ∈ G. The discussion
given in [15] depends on a finite subset W ⊂ G such that the functions
tg for g ∈ W generate T ; in what follows we shall fix a generating set
{h1, . . . , hn} for G, and take W to consist of all elements of the form
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hi1 · · ·hik with 1 ≤ i1 < · · · < ik ≤ n. It follows from Proposition 4.4.2
of [36] that W has the required property. According to the definition
given in [15], the SL2(C)-character variety of G, denoted by X(G), is
the set t(R(G)) ⊂ CW , where t : R(G) → CW is the map defined by
t(ρ) = (tg(ρ))g∈W . Corollary 1.4.5 of [15] asserts that X(G) is a closed
affine algebraic subset of CW . Moreover (see Proposition 1.5.2 in [15])
if ρ1, ρ2 ∈ R(G) are irreducible, then t(ρ1) = t(ρ2) if and only if ρ1 and
ρ2 are conjugate.

The following result is standard and we will omit its elementary
proof.

Lemma 2.4. Let G be a finitely generated group, and let (ρi)i≥0

be a sequence of representations in R(G) such that (t(ρi))i≥0 converges
in X(G) to t(ρ), where ρ ∈ R(G) is an irreducible representation. Then
there is a sequence of representations (ρ′i)i≥0 in R(G) such that ρ′i is
conjugate to ρi for each i ≥ 0, and (ρ′i)i≥0 converges to ρ in R(G).

The next lemma will allow us to obtain Properties (2) and (3) of
Proposition 2.2. We recall that a representation into PSL2(C) or SL2(C)
is reducible if it is conjugate to a representation whose image lies entirely
in the subgroup of upper triangular matrices, otherwise the representa-
tion is called irreducible.

Lemma 2.5. Let G be a finitely generated, nonabelian, torsion-free
group, let {h1, . . . , hn} be a generating set for G, and let Q denote the
set of all elements of G that may be written as positive words of length
at most n + 1 in the hi. If ρ1 and ρ2 are irreducible representations of
G in PSL2(C) such that τg(ρ1) = τg(ρ2) 2= 0 for every g ∈ Q, then ρ1
and ρ2 are conjugate. Furthermore, if K > 0 then

K =




[ρ] ∈ AH(G)
∣∣∣∣
∑

g∈Q

|τ g([ρ])| ≤ K






is a compact subset of AH(G).

Proof. To prove the first assertion of the lemma, we consider the free
group Fn on generators x1, . . . , xn and the homomorphism h : xi /→ hi

from Fn to G. It is clearly enough to prove that the conclusion holds
when G, ρ1 and ρ2 are replaced by Fn, ρ1 ◦ h and ρ2 ◦ h; hence we may
assume without loss of generality that G = Fn is free on the generators
h1, . . . , hn.

For i = 1, . . . , n we choose matrices Ã(1)
i , Ã(2)

i ∈ SL2(C) which map
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to ρ1(hi) and ρ2(hi) under π. Since τhi(ρ1) = τh2(ρ2), we may choose
the A(j)

i in such a way that traceA(1)
i = trace A(2)

i for i = 1, . . . n. For
j = 1, 2 we define a representation ρ̃j : Fn → SL2(C) by ρ̃j(hi) = Ai, so
that π ◦ ρ̃j = ρj .

We claim that t(ρ̃1)= t(ρ̃2). By definition this means that trace ρ̃1(g)
= trace ρ̃2(g) for every g ∈ W ⊂ Q. Any element g ∈ W may by
definition be written in the form hi1 · · ·hik with 1 ≤ i1 < · · · < ik ≤ n,
and we prove the required equality by induction on k ≥ 1. For k = 1
the equality follows from our choice of the A(j)

i . For k > 1 we may write
g = ab where a = hi1 · · ·hik−1 and b = hik , so that by the induction
hypothesis we have trace ρ̃1(a) = trace ρ̃2(a) = α, say, and by the base
case trace ρ̃1(b) = trace ρ̃2(b) = β, say. Since g ∈ W ⊂ Q, the hypothesis
gives τg(ρ1) = τg(ρ2). Hence trace ρ̃1(g) = ± trace ρ̃2(g). To complete
the induction we will assume that trace ρ̃1(g) = − trace ρ̃2(g) and obtain
a contradiction. Set γ = trace ρ̃1(g), so that trace ρ̃2(g) = −γ. From
the identity

(trace Y )(trace Z) = trace Y Z + trace Y Z−1,

which holds for all Y, Z ∈ SL2(C) (see [15], proof of Proposition 1.4.1),
by setting Y = ρ̃j(g) and Z = ρ̃j(b) for j = 1, 2, we obtain

trace ρ̃j(gb) = (trace ρ̃j(g))(trace ρ̃j(b)) − trace ρ̃j(a),

so that trace ρ̃1(gb) = γβ − α and trace ρ̃2(gb) = −(γβ + α). But
we have gb ∈ Q, so that τgb(ρ1) = τgb(ρ2) and hence trace ρ̃1(gb) =
± trace ρ̃2(gb); that is,

γβ − α = ±(γβ + α).

But this last equality is possible only if one of the (complex) numbers
α, β or γ is 0; and since a, b and g belong to W ⊂ Q, the hypothesis
implies that the numbers τa(ρ1) = α2, τb(ρ1) = β2 and τg(ρ1) = γ2 are
nonzero. This is the desired contradiction, and the claim is proved.

Since ρj : G → PSL2(C) is assumed to be irreducible for j = 1, 2
it follows that ρ̃j : G → PSL2(C) is irreducible. Since t(ρ̃1) = t(ρ̃2),
it now follows that ρ̃1 and ρ̃2 are conjugate. This immediately implies
that ρ1 and ρ2 are conjugate. This proves the first assertion in the free
case. (An alternate proof of the first assertion is provided by Lemma
3.1 of [9].)

To establish the second assertion, we need to show that any sequence
[ρi] of points of K has a convergent subsequence. We construct, for each
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i, a representation ρ̃i : Fn → SL2(C) such that π ◦ ρ̃i = ρi ◦ h. For
each i ≥ 0 and each g ∈ Q, the hypothesis guarantees that |tg(ρ̃i)| =√

|τg(ρi)| is bounded as i → ∞. As this applies in particular when
g ∈ W , it follows that in the sequence (t(ρ̃i)i≥0) of points of X(Fn),
all the coordinates are bounded. Hence after passing to a subsequence
we may assume that (t(ρ̃i)) converges to a point χ = t(ρ̃) for some ρ̃ ∈
R(Fn). Since G is isomorphic to the torsion-free, nonabelian, discrete
subgroup ρ0(G) of PSL2(C), there exist elements a and b of G which
generate a free subgroup of rank 2. Let x = aba−1b−1. If ρ̃ were
reducible, then we would have tx(ρ̃) = txbx−1b−1(ρ̃) = 2. But, since
K ⊂ AH(G), Jørgensen’s inequality (see [25, Lemma 1]) guarantees
that |tx(ρ̃i)2 − 4| + |txbx−1b−1(ρ̃i) − 2| ≥ 1 for all i. Hence ρ̃ must be
irreducible.

It now follows from Lemma 2.4 that the ρ̃i are conjugate in SL2(C) to
representations ρ̃′i such that ρ̃′i → ρ̃. If P : SL2(C) → PSL2(C) denotes
the natural homomorphism, it follows that ρ′i = P ◦ ρ̃′i converges to
ρ = P ◦ ρ̃, and hence that [ρi] = [ρ′i] converges to [ρ]. But, ρ is a discrete
faithful representation, since the discrete faithful representations form
a closed subset of Hom(G, PSL2(C)) (see [25, Theorem 1].) q.e.d.

Proof of Proposition 2.2. Since M is a compact orientable 3-
manifold with a non-torus boundary component, it follows from Poin-
caré-Lefschetz duality that the first betti number of M is at least 2.
Hence there is a surjective homomorphism φ : π1(M) → Z ⊕ Z. More-
over, π1(M) is finitely generated and nonabelian. By Lemma 2.3 it
follows that there is a finite set {h1, . . . , hn} of generators of the group
G with the property that no power of any element of a conjugacy class
in F can be written as a nonempty positive word in h1, . . . , hn.

Now set m =
∑n+1

i=1 ni, and let Q = {b1, . . . , bm} be the nontrivial
elements of π1(M) which can be written as positive words of length at
most n + 1 in the hi. Since π1(M) admits a discrete faithful represen-
tation in PSL2(C), the centralizer of the nontrivial element bi ∈ π1(M)
is a free abelian group of rank at most 2, for i = 1, . . . , m. Hence
we may write bi as a positive power adi

i of some primitive element of
π1(M). It follows from our choice of {h1, . . . , hn} that no a±1

i belongs
to a conjugacy class in F . This is Conclusion (1) of the proposition.
To prove Conclusion (2), suppose that [ρ1], [ρ2] ∈ AH(π1(M)) satisfy
τai([ρ1]) = τai([ρ2]) for all i = 1, . . . , m. Since π1(M) is nonabelian
and torsion-free and ρi is discrete and faithful, for i = 1, 2, ρi(π1(M))
is not solvable, ρi is irreducible and τg(ρi) 2= 0 for any g ∈ π1(M). If
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bi ∈ Q, then τai([ρ1]) = τai([ρ2]), which implies, since bi = adi
i , that

τ bi([ρ1]) = τ bi([ρ2]). Hence by the first assertion of Lemma 2.5 we have
[ρ1] = [ρ2].

To prove Conclusion (3), we apply the second assertion of Lemma 2.5.
Let

K′ =

{
[ρ] ∈ AH(π1(M))

∣∣∣∣
m∑

i=1

|τai([ρ])| ≤ K

}
.

It is easy to check that if A ∈ PSL2(C), then |tr(Ad)| ≤ (|tr(A)|+1)d+1
for any positive integer d, so K′ is a closed subset of

K =

{
[ρ] ∈ AH(π1(M))

∣∣∣∣
m∑

i=1

|τ bi([ρ])| ≤ m
(
(
√

K + 1)D + 1
)2
}

where D = max{d1, . . . , dm}. But Lemma 2.5 implies that K is compact,
so K′ is also compact. q.e.d.

2.6 An outline of the argument

In order to provide an outline of the argument we fix a point [ρ] on the
boundary of CC0(M) such that Ω(ρ) = ∅. Let ([ρn]) be a sequence in
CC0(M) converging to [ρ]. We must find a sequence ([ρ̂n]) of maximal
cusps in ∂CC0(M) which also converges to [ρ].

The following observation of Bers allows us to conclude that ∂cNρn
has a pants decomposition of uniformly bounded length.

Proposition 2.6 (Bers). Given any A > 0, there exists a con-
stant k1 such that any hyperbolic surface of area at most A has a pants
decomposition of length at most k1.

In the proof of Proposition 4.1 we use Proposition 2.6 together with
Lemma 2.1 and Sullivan’s rigidity theorem to produce a new sequence
([ρn]) in CC0(M) converging to [ρ] such that if Cn is the shortest pants
decomposition of ∂cNρn , then the length l(Cn) of Cn in ∂cNρn , converges
to 0. Proposition 3.1 will allow us to conclude that, for all large enough
n, Cn is pinchable.

Proposition 2.2 allows us to choose an allowable collection of test
elements A = {a1, . . . , am} such that no element of A is taken to a
parabolic element by ρ.

Our main local estimate, Theorem 14.1, asserts that if ρ ∈ CC0(M)
and µ is a unit norm Beltrami differential supported on the portion of
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the 2L-thin part of ∂cNρ associated to a pinchable collection of simple
closed geodesics, then DΥa(DΦ(µ)) has length O(L) (assuming that
L is sufficiently close to 0 and that ρ(a) has moderate real translation
length.) By iterative application of Lemma 2.1 we may produce, for
each n, an infinite path βn : [0,∞) → T (∂M) which begins at a lift of
ρn to T (∂M) and which pinches the length of Cn to 0. For each t the
tangent vector β′n(t) is represented by a Beltrami differential supported
on the appropriate thin part. If we apply the estimate coming from
Theorem 14.1 we see that Υai(βn) has length O(l(Cn)) in CC0(S1×D2)
for each ai ∈ A. It is then easily checked that qM (βn) has length
O(l(Cn)) in the dA-metric on AH(π1(M)) and hence accumulates at
some conjugacy class [ρ̂n]. Since the homotopy class of any component
of Cn is mapped to a parabolic by ρ̂n, one may apply work of Keen,
Maskit and Series [27], to see that [ρ̂n] is a maximal cusp. The estimates
also give that ([ρ̂n]) converges to [ρ].

In Section 6 we will assemble the proof, assuming Theorem 14.1.
Most of the remainder of the paper will be devoted to the analytical
proof of this local estimate. An outline of the ideas underlying the
analytical arguments is given in Section 7. Extensions and corollaries
of the main theorem appear in Sections 15 and 16.

Our rough outline of argument is similar to the outline of proof of
McMullen’s result in [32], although there are several key differences.
Most importantly, McMullen bounds the rate of change of the Schwarz-
ian derivative during the pinching. Since there is no analogue of the
Schwarzian derivative in our setting, we instead bound the change of the
complex lengths of a collection of test elements. We do so by bounding
the induced deformation in the Teichmüller space of the torus associ-
ated to each test element. The proof of Theorem 14.1, which is used to
obtain the bounds, uses much of the analytical machinery developed in
[32] in combination with a number of estimates obtained by applying
the Margulis lemma to the subgroup generated by a test element and
a pinching element. This change also necessitated the development, in
Section 2.5, of an explicit metric on AH(π1(M)) associated to a well-
chosen collection of test-elements. Furthermore, in McMullen’s setting
any pants decomposition is pinchable, which is not the case in our sit-
uation. Proposition 3.1 was developed to check that our chosen pants
decompositions are indeed pinchable.
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3. Bounded pants are eventually pinchable

In this section we will see that if a sequence ([ρn]) in CC0(M) con-
verges to [ρ], where Ω(ρ) = ∅, and if Cn is a bounded length collection
of curves in the conformal boundary of Nρn , then Cn is pinchable for
all large enough n.

Proposition 3.1. Let M be a compact, oriented, atoroidal, irre-
ducible 3-manifold whose boundary is nonempty and contains no tori.
Let (ρn) be a sequence of convex cocompact uniformizations of M con-
verging to ρ : π1(M) → PSL2(C), such that Ω(ρ) = ∅. If K > 0 and, for
each n, Cn is a collection of disjoint simple closed geodesics on ∂cNρn

of total length at most K, then Cn is pinchable for all sufficiently large
n.

In the proof, we will need to use a few facts about the convex core
of a hyperbolic 3-manifold. The convex core C(N) of a hyperbolic 3-
manifold N = H3/Γ is the smallest convex submanifold whose inclusion
is a homotopy equivalence. More concretely, if Λ(Γ) = Ĉ − Ω(Γ) is the
limit set of Γ then C(N) is the quotient of the convex hull CH(Λ(Γ))
under the action of Γ. The hyperbolic metric on N induces an intrinsic
metric on the 2-manifold ∂C(N) which is itself hyperbolic. The nearest
point retraction r : N → C(N) sends a point of N to the (unique) point
nearest to it in the convex core. There is a continuous extension of r
to a map r : N ∪ ∂cN → C(N). If Γ does not preserve a circle in Ĉ,
then r is homotopic to a homeomorphism between N and C(N). (See
Epstein-Marden [21] for more details on the convex core and the nearest
point retraction.)

Canary [10] showed that curves of “moderate” length in the con-
formal boundary also have “moderate” length in the boundary of the
convex core, with respect to its intrinsic metric.

Theorem 3.2. Let N be a hyperbolic 3-manifold and let γ be a
closed geodesic of length L in ∂cN , then

l∂C(N)(r(γ)∗) ≤ 45Le
L
2

where r(γ)∗ denotes the geodesic in the intrinsic metric on ∂C(N) in
the homotopy class of r(γ).

Proof of Proposition 3.1. Let {g1, . . . , gk} be a set of generators
for π1(M). Fix a point x0 ∈ H3. Since (ρn) converges, there exists a
uniform upper bound S on d(x0, ρn(gi)(x0)) for all i and n. Moreover,



approximation by maximal cusps 77

there exists δ > 0 such that if d(x0, x) ≤ S, then d(x, γ(x)) ≥ 2δ for
any γ ∈ ρn(π1(M)− {id}) and any n. In particular, if γi,n is the image
in Nn = Nρn of the geodesic joining x0 to ρn(gi)(x0), then injNn

(y) ≥ δ
at any point y of γi,n.

Let rn : Nn → C(Nn) be the nearest point retraction. Theorem 3.2
implies that rn(Cn) is homotopic, in ∂C(N), to a collection C ′

n of curves
in ∂C(N) of length at most K ′ = 45KeK/2. We notice that for all
large enough n, ρn(π1(M)) does not preserve a circle, since otherwise
ρ(π1(M)) would preserve a circle. This would imply that Λ(ρ) is con-
tained in a circle, which would contradict our assumption that Ω(ρ) = ∅.
Therefore, we may assume that rn is homotopic to a homeomorphism
for all n.

If the theorem fails, we can pass to a subsequence, again called (ρn),
such that Cn is not pinchable for any n. Therefore, there exists, for all n,
a surface Bn which is either a compressing disk or an immersed essential
annulus with boundary contained in Cn. So, there exists a surface B′

n in
C(Nn), which is properly homotopic, in C(Nn), to rn(Bn) and is either
a compressing disk or an immersed essential annulus with boundary
contained in C ′

n. In particular, the boundary of B′
n has length at most

2K ′.
We claim that each surface B′

n is homotopic, rel boundary, to a
surface Yn with the following property: if x is a point of Yn and if the
injectivity radius injNn

(x) is greater than δ, then the distance in Nn

from x to ∂Yn is less than k(δ) for some uniform constant k(δ).
To construct Yn we first subdivide ∂B′

n into subarcs of length less
than 1. If B′

n is a disk we arrange that there are at least three subarcs in
the subdivision, and if B′

n is an annulus then we arrange that there be
at least one subdivision point on each boundary component. We may
then extend this subdivision of ∂B′

n to a topological triangulation of B′
n

with all vertices on the boundary. That is, we have a collection E of arcs
in B′

n, which are either elements of the subdivision of ∂B′
n or properly

embedded arcs whose endpoints are also endpoints of subdivision arcs;
furthermore the closure of each component of B′

n − E is a disk whose
boundary consists of three arcs of E . In the case that B′

n is an annulus
we may easily arrange that each arc of E which is not contained in ∂B′

n

has an endpoint on each boundary component. For each arc e ∈ E let
e′ be the geodesic arc which is homotopic rel endpoints to e. For each
component t of B′

n − E , if we denote the arcs that comprise ∂t by e1, e2

and e3, then we define t′ to be the geodesic triangle bounded by e′1, e′2
and e′3. The union of the triangles t′ is an immersed hyperbolic surface
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Xn. Since the area of a hyperbolic triangle is at most the length of any
of its sides, Xn has area at most 2K ′.

The surface B′
n is homotopic to Xn by a homotopy Hn such that the

track of any point on ∂B′
n has length less than 1. Let Yn be the union

of Xn with the annulus (or annuli) which is the image of ∂B′
n × [0, 1]

under the homotopy Hn. Clearly Yn is homotopic rel boundary to B′
n.

If Xn is a disk, x ∈ Xn and d(x, ∂Xn) = R, then Xn contains an
embedded hyperbolic ball of radius R, so Xn has area at least 2πR2. So
R ≤

√
K′
π . It follows that if x ∈ Yn, then d(x, ∂Yn) ≤

√
K′
π + 1.

Now suppose that Xn is an annulus. If x ∈ Xn, then again there is
not an embedded hyperbolic ball of radius

√
K′
π about x. If x ∈ Xn and

injNn
(x) ≥ δ, then injXn

(x) ≥ δ, so either d(x, ∂Xn) ≤
√

K′
π or there

exists a geodesic (in Xn) loop β based at x in X of length at least 2δ

and at most 2
√

K′
π . If d(β, ∂Xn) = R and d(x, ∂Xn) >

√
K′
π , then by

considering cylindrical coordinates about β, we see that Xn must have
area at least δR. It follows that d(x, ∂Xn) ≤

√
K′
π + 2K′

δ in either case.

Therefore, if y ∈ Yn and injNn
(y) ≥ δ, then d(y, ∂Yn) ≤

√
K′
π + 2K′

δ + 1.

Let k(δ) = 2K′

δ +
√

K′
π +1. In either case, if y ∈ Yn and injNn

(y) ≥ δ,
then d(y, ∂Yn) ≤ k(δ).

Since the surface Yn is essential and the loops {γi,n} represent gen-
erators of π1(Nn, y0,n) (where y0,n is the image of x0 in Nn), at least
one of these loops must meet Yn. Since each of these loops has length
at most S and every point on each loop has injectivity radius at least
δ, the distance from y0,n to ∂Yn is at most 1 + S + k(δ). This implies
that the distance from x0 to the boundary of ∂CH(Λ(ρn)) is uniformly
bounded for all n.

Without loss of generality we may assume that we are working in
the ball model and that x0 is the origin. The inequalities above imply
that there exists ε > 0 depending only on δ and S such that Ω(ρn)
contains a disk of radius at least ε in the spherical metric on S2

∞. We
may pass to a subsequence so that (Λ(ρn)) = (Ĉ − Ω(ρn)) converges,
in the Hausdorff topology on closed subsets of Ĉ, to Λ̂. It is immediate
that Ĉ− Λ̂ must contain a ball of radius at least ε. Since Ĉ− Λ̂ ⊂ Ω(ρ),
this contradicts our assumption that Ω(ρ) = ∅. q.e.d.
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4. Approximating by sequences with short pants
decompositions

In this section we combine Lemma 2.1 and Lemma 3.1 to show that
if [ρ] ∈ ∂CC0(M) and Ω(ρ) = ∅, then ρ may be approximated by convex
cocompact uniformizations of M whose conformal boundaries contain
increasingly short pinchable pants decompositions.

Proposition 4.1. Let M be a compact, oriented, irreducible,
atoroidal 3-manifold and let [ρ] ∈ ∂CC0(M), where Ω(ρ) = ∅. There
exists a sequence (ρn) of convex cocompact uniformizations of M con-
verging to ρ and a sequence (Cn) of pinchable pants decompositions of
∂cNρn such that the length l(Cn) of Cn in ∂cNρn converges to 0.

Proof. Since [ρ] ∈ ∂CC0(M), we may choose a sequence (ρn) of
convex cocompact uniformizations of M which converge to ρ. Bers’
inequality (Proposition 2.6) implies that, for all n, there exists a pants
decomposition of ∂cNρn

of length at most k1.

Let B be the constant provided by Lemma 2.1 when L0 = k1 and
let K = κB where κ is the number of curves in a pants decomposition
of ∂M . We may iteratively apply Lemma 2.1 to obtain a 1-Lipschitz
path βn : [0,∞) → T (∂M) such that qM (βn(0)) = [ρn] and the surface
βn(Kj) has a pants decomposition of length at most k1

2j .

Let [ρn,j ] = qM (βn(Kj)). Since the Teichmüller distance between
[ρn] and [ρn,j ] is at most Kj, there exists a e2Kj-quasiconformal map
fn,j : Ĉ → Ĉ such that ρn,j = fn,jρf

−1
n,j .

For this paragraph let j be any fixed positive integer. By post-
composing each fn,j by a Möbius transformations, we may assume that
a subsequence of (fn,j) converges to a e2Kj-quasiconformal map fj such
that fjρf

−1
j is a discrete faithful representation. Since Λ(ρ) = Ĉ, Sulli-

van’s rigidity theorem ([38, Theorem VII]) implies that fj is a Möbius
transformation. Therefore, a subsequence of ([ρn,j ]) converges to [ρ] in
CC0(M).

A diagonalization argument then provides a sequence (ρn) which
converges to ρ, such that if Cn is the shortest pants decomposition of
∂cNρn , then l(Cn) converges to 0. Proposition 3.1 implies that Cn is
pinchable for all large enough n, so by excising finitely many terms, we
may assume that Cn is pinchable for all n. q.e.d.
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5. The main global estimate

In this section, we use Lemma 2.1 and the main local estimate to
obtain an estimate on the distance between a representation with a
“short” pants decomposition of its conformal boundary and its associ-
ated maximal cusp. This estimate is the key step in the proof of the
main theorem.

Proposition 5.1. Let M be a compact, oriented, irreducible,
atoroidal 3-manifold whose boundary is nonempty and contains no tori
and let A = {a1, . . . , am} be an allowable collection of test elements in
π1(M). Given D0 > d0 > 0, there exists L1 > 0 and G > 0 such that if
[ρ] ∈ CC0(M) and:

1. C is a pinchable pants decomposition of ∂cNρ of length L < L1,

2. no element of A represents a curve in C, and

3. D0
2 ≥ lρ(ai) ≥ 2d0 for all i = 1, . . . , m, where lρ(ai) denotes the

real translation distance of ρ(ai),

then there exists a maximal cusp [ρ̂] ∈ ∂CC0(M) such that

dA([ρ], [ρ̂]) ≤ G L.

The proof of Proposition 5.1 follows rather quickly from the main
local estimate:

Theorem 14.1. Given d0 > 0, there exists D6 > 0 and K0 > 0
with the following properties. Suppose that M is a compact, oriented
3-manifold, a is a primitive element in π1(M), [ρ] ∈ CC0(M) and
l(ρ(a)) > d0. Suppose that C is a pinchable collection of disjoint simple
closed geodesics in ∂cNρ, none of which represents ρ(a), such that each
element of C has length at most L where

L ≤ D6e
−l(ρ(a)).

If µ is a unit-norm Beltrami differential on ∂cNρ which is supported on
the union of the 2L-thin parts associated to elements of C, then

‖DΥa(DΦ(µ))‖ ≤ K0L.
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The proof of Theorem 14.1 will occupy Sections 8–14. An outline of
the proof of Theorem 14.1 appears in Section 7.

Proof of Proposition 5.1 (assuming Theorem 14.1). We recall that
qT : T (T 2) −→ CC0(S1 × D2) is the quotient map and we identify
π1(S1 × D2) with Z. Let

Es =
{
σ ∈ T (T 2)| 2d0 ≤ l(qT (σ)(1)) ≤ D0/2

}

where l(qT (σ)(1)) denote the real translation distance of qT (σ)(1). Sim-
ilarly, we let

Ef =
{
ρ ∈ T (T 2)| d0 ≤ l(qT (σ)(1)) ≤ D0

}
.

By assumption, for each i = 1, · · · , m, we have that Υai([ρ]) ∈ qT (Es).
The sets qT (Es) and qT (Ef ) are compact subsets of CC0(S1 ×D2). Let
δ be the distance, measured in the (quotient) Teichmüller metric on
CC0(S1 × D2), between qT (Es) and the boundary of qT (Ef )

Let h : M → Nρ be an orientation-preserving homeomorphism such
that [h∗] = [ρ]. Let B be the constant provided by Lemma 2.1 when
L0 = D6 and let B′ = κB where κ is the number of curves in a pants de-
composition of ∂M . Assuming that L1 ≤ D6, we may apply Lemma 2.1
κ times to obtain a path β : [0, B′] → T (∂M) with β(t) = (Xt, gt ◦ h)
such that:

(i) β(0) = (∂cNρ, h),

(ii) lXt(gt(C)) ≤ L for all t,

(iii) lXB′ (gB′(C)) ≤ L
2 , and

(iv) β′(t) is represented, for all t, by a unit norm Beltrami differential
µt supported on the 2L-thin part of Xt associated to gt(C).

If [ρt] = qM (β(t)) and N t = Nρt , then gt extends to a homeomorphism
gt : Nρ → N t such that [ρt] = [(gt ◦ h)∗].

Let D6 and K0 be the constants associated to d0 in the main local
estimate, Theorem 14.1. Then assuming that L1 ≤ D6e−D0 , Theo-
rem 14.1 implies that

‖DΥai(DΦ(µt))‖ = ‖DΥ̃ai(β
′(t))‖ ≤ K0L

for all t such that Υ̃ai(β(t)) ∈ Ef . Therefore, Υ̃ai(β([0, B′])) ∩ Ef has
length at most K0B′L. If we have assumed that L1 < δ

K0B′ , then this
implies that the entire path lies in Ef .
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We may iterate this process (reducing the length of C by a factor of
2 at each stage) to produce an infinite path β : [0,∞) → T (∂M) such
that lXt(gt(C)) ≤ L

2n and β′(t) is supported on the L
2n−1 -thin part of Xt

for all t ∈ [nB′, (n + 1)B′]. Applying the argument above we see that
Υ̃ai(β([0,∞)) ∩ Ef has length at most

K0B
′
(

L +
L

2
+ · · · + L

2k
+ · · ·

)
= 2K0B

′L.

In particular, if L1 ≤ δ
2K0B′ , then Υ̃ai(β([0,∞)) lies entirely in Ef for

all i. Let
L1 = min

{
D6e

−D0 ,
δ

2K0B′

}
.

If [ν] ∈ CC0(S1 × D2), then let τ0([ν]) denote the square of the
trace of ν(1) where 1 denotes the generator of π1(S1 × D2) ∼= Z. Then
τ0 : CC0(S1 ×D2) → C is a smooth function and τa([ρ]) = τ0(Υa([ρ]))
for all [ρ] ∈ CC0(M) and all a ∈ π1(M). Since qT (Ef ) is compact and
τ0 is smooth, there exists K3 > 0 such that if ν1, ν2 ∈ qT (Ef ), then

|τ0(ν1) − τ0(ν2)| ≤ K3d(ν1, ν2)

(where the metric on the right is the quotient Teichmüller metric on
CC0(S1 × D2).) It follows that, for all i,

τ0(qT (Υ̃ai(β([0,∞)))) = τai(qM (β([0,∞)))

has length at most 2K3K0B′L in C. By definition then qM (β([0,∞)))
has length at most 2mK3K0B′L in the dA-metric on AH(π1(M)). There-
fore, there is a conjugacy class [ρ̂] ∈ AH(π1(M)) which is an accumula-
tion point of {qM (β(n))}.

Let C ′ = h−1(C). If η is a curve in C ′, then lXt(gt(h(η))) converges
to 0. Let b be an element of π1(M), such that η is a representative of
ρ(b). A result of Sugawa [37, Proposition 6.1], stated below as Proposi-
tion 11.2, implies that the complex translation length of ρt(b) also con-
verges to 0. Thus, ρ̂(b) is parabolic. Since, C ′ is a maximal, collection
of disjoint simple closed curves in ∂M , Theorem III in [27] guarantees
that ρ̂ is a maximally cusped uniformization of M . Noticing that

dA([ρ̂], [ρ]) ≤ 2mK0K3B
′L,

completes the proof of the result if we take G = 2mK0K3B′. q.e.d.
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6. Proof of the main theorem

We are now ready for the proof of our main theorem.

Theorem 6.1 (Approximations by maximal cusps). Let M be a
compact, oriented, irreducible, atoroidal 3-manifold whose boundary is
nonempty and contains no tori. If [ρ] ∈ ∂CC0(M) and Ω(ρ) = ∅, then
[ρ] can be approximated by maximal cusps in ∂CC0(M).

Proof. Let (ρn) and (Cn) be the sequences of representations and
pinchable pants decompositions given by Proposition 4.1. Let F be the
collection, necessarily finite, of conjugacy classes of primitive parabolic
elements in ρ(π1(M)). Let A be an allowable collection of test elements,
provided by Proposition 2.2, which does not contain any elements of F .

We may choose positive constants d0 and D0 such that

4d0 < lρ(ai) <
D0

4

for all i = 1, . . . , m. We use these values of d0 and D0 in all applications
of Proposition 5.1. Let L1 be the constant provided by Proposition 5.1
with our chosen values of d0 and D0.

Since (ρn) converges to ρ and l(Cn) converges to 0, there exists n0

such that if n ≥ n0, then:

1. 2d0 ≤ lρn(ai) ≤ D0
2 for all i = 1, . . . , m,

2. 45l(Cn)el(Cn)/2 < d0, and

3. l(Cn) < L1.

If ρn(cn) is an element of ρn(π1(M)) representing a curve in Cn,
then Theorem 3.2 implies that there is a representative of ρn(cn) in
∂C(Nρn) of length at most 45l(Cn)el(Cn)/2 < d0. It follows that the real
translation length l(ρn(cn)) of ρn(cn) is less than d0. So, no curve in Cn

is represented by an element of A.
Proposition 5.1 then implies that, for all n > n0, there exists a

maximal cusp [ρ̂n] ∈ ∂CC0(M) such that

dA([ρn], [ρ̂n]) ≤ Gl(Cn).

Since, (dA([ρn], [ρ])) and (l(Cn)) both converge to 0, it is clear that
([ρ̂n]) is a sequence of maximal cusps in ∂CC0(M) converging to [ρ].

q.e.d.
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7. An outline of the proof of the main local estimate

We now outline the proof of the main local estimate, Theorem 14.1.
Recall that Theorem 14.1 asserts that if ρ ∈ CC0(M), C is a pinchable
collection of geodesics in ∂cNρ of length at most L, and µ is a Beltrami
differential supported on the portion of the 2L-thin part of ∂cNρ as-
sociated to C, then DΥa(DΦ(µ)) has length O(L), assuming that L is
sufficiently close to 0 and that ρ(a) has moderate real translation length.

We previously observed that if µ̃ is the lift of µ to Ω(ρ), then µ̃ is also
a lift of the representative of DΥa(DΦ(µ)). The length of DΥa(DΦ(µ))
is thus the supremum of the values of

∫
F φµ̃ where F is a fundamen-

tal domain for 〈ρ(a)〉 and φ is the pull-back of a unit-norm quadratic
differential on T (ρ(a)) = Ω(〈ρ(a)〉)/〈ρ(a)〉.

Since µ is supported on the 2L-thin part of ∂cNρ, µ̃ is supported on
the union of the pre-images of these thin parts. If γ is a hyperbolic ele-
ment of ρ(π1(M)) associated to a component of the 2L-thin part, then
we will define a seahorse Bγ to be a pre-image of a specified annulus Aγ

on Tγ = Ω(〈γ〉)/〈γ〉; see Section 8 for a general discussion of seahorses.
Each component of the pre-image of a thin part is contained in a sea-
horse Bγ ; see Lemma 14.2. Although the components of the pre-images
of the thin parts are disjoint, the associated seahorses need not be.

In Section 13 we will explain how to modify a construction of Mc-
Mullen, to choose a collection {Eγ}, indexed by a subset G′ of G, of
disjoint sets each of which is contained in a seahorse Bγ , contains a
slightly smaller seahorse, and is invariant under the “generator” γ of
the seahorse Bγ . Moreover, ∪γ∈G′Eγ will be seen to contain the support
of µ̃; see Lemma 14.2.

We thus reduce the proof of Theorem 14.1 to bounding
∫
Bγ
φνγ for

each seahorse Bγ where γ ∈ G′ and νγ is the restriction of µ̃ to Eγ . In
particular, we need to show that

∣∣∣∣∣

∫

Bγ

φνγ

∣∣∣∣∣ ≤ D3L‖φ‖Bγ .(3)

for some constant D3 > 0. After summing over all γ ∈ G′ such that Bγ

intersects the fundamental domain F , this will show that
∣∣∣∣
∫

F
φµ̃

∣∣∣∣ ≤ D3L
∑

‖φ‖Bγ ≤ K0L

for some positive constant K0.
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We use a duality principle (see equation 4 in Section 9) to reduce
equation 3 to an estimate on the image of φ by the Theta operator
associated to the covering of Aγ by Bγ . Our key tools are an estimate
of McMullen’s in a similar situation, stated here as Theorem 9.1, and
an estimate coming from the Margulis lemma, see Section 10.

8. Seahorses

In this section, we briefly review the theory of thickened spirals as
developed by McMullen.

A hyperbolic Möbius transformation γ will be said to have com-
plex translation length λ ∈ C if γ is conjugate in the group of Möbius
transformations to z /→ eλz. We will, without loss of generality, always
assume that the imaginary part of a complex translation length lies in
the interval (−π,π].

Let γ be a Möbius transformation with complex translation length
λ and distinct fixed points a and b. We set Ωγ = Ω(〈γ〉) = C − {a, b}
and we observe that Tγ = Ωγ/〈γ〉 is a torus. Consider the covering map
pγ : Ωγ → Tγ . Given q ∈ Ωγ , we will construct an explicit covering
pT : C → Tγ which factors through pγ and satisfies pT (0) = pγ(q).
Let Sγ be the Möbius transformation which takes 0 and ∞ respectively
to the fixed points a and b of γ and satisfies Sγ(1) = q. The map
pΩ : C → Ω(〈γ〉) given by pΩ(z) = Sγ(eλz) is a covering map whose
associated group of covering transformations is generated by z /→ z+ 2πi

λ .
We set pT = pγ ◦ pΩ. Note that the covering transformation z /→ z + 1
of pT : C → Tγ covers the deck transformation γ of the intermediate
cover pγ : Ωγ → Tγ .

The conformal structure on the torus Tγ determines a flat metric on
Tγ which is unique up to scaling. The flat metric on Tγ lifts to a flat
metric on Ωγ . If s ∈ Ωγ and w ∈ p−1

Ω (s), then

gs = pΩ({z ∈ C | Im(z) = Im(w)})

is a geodesic in the flat metric on Ωγ and projects to a closed geodesic
on Tγ that passes through pγ(s). One may easily check that Tγ −pγ(gs)
is an annulus of conformal modulus M(γ) = 4π2Re( 1

λ).
If m ∈ (0, M(γ)), then we can define

C(m) =
{

z ∈ C
∣∣∣

m

4π
< Im(z) <

M(γ)
2π

− m

4π

}
.
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We let B(γ, m, q) = pΩ(C(m)) ⊂ Ωγ and A(γ, m, q) = pT (C(m)) ⊂ Tγ .
One may also define A(γ, m, q) to be the annulus obtained by removing
from Tγ a right cylinder of modulus m with central circle pγ(gq). In
particular, q projects to a point in Tγ −A(γ, m, q) at maximal distance
from A(γ, m, q).

Figure 1. The seahorse B(γ, m, q) where γ has fixed points {0, 1}
and complex length λ = 0.5 + (75π/243)i, m = 4.004π and q = ∞.

We will refer to B(γ, m, q) as a seahorse. Our definition of a seahorse
coincides with McMullen’s “thickened spiral.” If Im(λ) is nonzero, the
seahorse is bounded by two exponential spirals connecting the fixed
points of γ.

The shapes of seahorses are studied in Section 3.1 of McMullen [32].

Proposition 8.1 ([32, Proposition 3.2]). There exist positive con-
stants c1, C1, c2 and C2 such that if γ is a hyperbolic Möbius transfor-
mation with fixed points {0, 1} and q = ∞, then:

1.
c1

|mλ| < diam(B(γ, m, q)) <
C1

|mλ|

where diam(B(γ, m, q)) is the Euclidean diameter of B(γ, m, q),
and

2. if m < M(γ)/2, then

c2 (diam(B(γ, m, q)))2 ≤ area(B(γ, m, q))

≤ C2 (diam(B(γ, m, q)))2 .
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9. The Theta operator

Given a holomorphic covering π : Y →X of Riemann surfaces and
φ ∈ Q(Y ), one may define a quadratic differential π∗(φ) as follows. If
x ∈ X and U is an evenly covered neighborhood of x, then we define
π∗(φ)(x) by summing (π−1)∗(φ) over the components of π−1(U). In
other words,

π∗(φ)(x) =
∑

w∈π−1(x)

(π−1
w )∗φ.

The map φ→π∗(φ) defines an operator, called the Poincaré Theta op-
erator, which is denoted

ΘY/X : Q(Y )→Q(X).

Since,

‖ΘY/X(φ)‖ ≤
∫

X
π∗|φ| =

∫

Y
|φ| = ‖φ‖,

ΘY/X has operator norm at most 1.
If µ ∈ B(X) is a Beltrami differential and φ ∈ Q(Y ), then

∫

Y
φπ∗µ =

∫

X
Θ(φ)µ.

In particular, if ‖µ‖ ≤ 1, then
∣∣∣∣
∫

Y
φπ∗µ

∣∣∣∣ =
∣∣∣∣
∫

X
Θ(φ)µ

∣∣∣∣ ≤
∫

X
|Θ(φ)µ| ≤ ||Θ(φ)|| .(4)

Inequality 4 plays a key role in the proof of Theorem 14.1.
The following estimate is one of the key tools in McMullen’s work.

Theorem 9.1 (Theorem 3.1 in McMullen [32]). Let γ be a hy-
perbolic Möbius transformation with fixed points 0 and 1. Let m be
a real number such that M(γ) > m > 4π and set B = B(γ, m,∞),
A = A(γ, m,∞), and Θ = ΘB/A. There exists a constant C3 > 0 such
that for any γ and m as above we have

∥∥Θ(dz2)
∥∥

A

‖dz2‖B
≤ C3

(
m2

M(γ)2
+

m2

e
m
2

)
.

We will need a similar bound on the image under Θ of the quadratic
differential dz2

(z−t)2 . This differential will arise as the pull-back of a
quadratic differential on the torus associated to one of our test ele-
ments. McMullen’s original estimate will be the key tool used in our
proof.
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Proposition 9.2. Let γ be a hyperbolic Möbius transformation
with fixed points 0 and 1 and complex translation length λ. Let m be
a real number such that M(γ) > m > 4π and set A = A(γ, m,∞),
B = B(γ, m,∞), and Θ = ΘB/A. There exist positive constants c4

and C4 such that if γ and m are as above, t is a complex number and
|t| > c4/|mλ|, then

∥∥∥Θ
(

dz2

(z−t)2

)∥∥∥
A∥∥∥ dz2

(z−t)2

∥∥∥
B

≤ C4

(
m2

M(γ)2
+

m2

e
m
2

)
.

Proof. Let B = B(γ, m, q) and let β0 = supz∈B |z|, so

β0 ≤ diam (B) ≤ 2β0.

Proposition 8.1 gives that diam(B) < C1/|mλ|. Choose c4 = 2C1. Since
|t| > c4/|mλ|, then |t| > 2β0. Thus, for every z ∈ B we have

2|t| ≥ |z − t| ≥ |t|
2

.

We also observe that

dz2

(z − t)2
− dz2

t2
=

z(2t − z)
t2(z − t)2

dz2.

and that ∣∣∣∣
z(2t − z)
t2(z − t)2

∣∣∣∣ <
10β0

|t|3

for all z ∈ B. Since Θ is a linear operator we have
∥∥∥∥Θ
(

dz2

(z − t)2

)∥∥∥∥
A

≤
∥∥∥∥Θ
(

dz2

t2

)∥∥∥∥
A

+
∥∥∥∥Θ
(

10β0

|t|3 dz2

)∥∥∥∥
A

.

Since 1
(z−t)2 ≥ 1

4t2 for all z ∈ B, ‖ dz2

(z−t)2 ‖B ≥ 1
4‖

dz2

t2 ‖B. Combining the
last two observations with the fact that Θ is a linear operator, we obtain

∥∥∥Θ
(

dz2

(z−t)2

)∥∥∥
A∥∥∥ dz2

(z−t)2

∥∥∥
B

≤ 4

( 1
|t|2 ‖Θ(dz2)‖A

1
|t|2 ‖dz2‖B

+
10β0
|t|3 ‖Θ(dz2)‖A

1
|t|2 ‖dz2‖B

)

= 4
(

1 +
10β0

|t|

)
‖Θ(dz2)‖A

‖dz2‖B
.
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Since |t| > 2β0, we see that 4
(
1 + 10β0

|t|

)
< 24. Combining this with

McMullen’s estimate, we obtain
∥∥∥Θ
(

dz2

(z−t)2

)∥∥∥
A∥∥∥ dz2

(z−t)2

∥∥∥
B

≤ 24C3

(
m2

M(γ)2
+

m2

e
m
2

)

and the result follows if we take C4 = 24C3. q.e.d.

10. An application of the Margulis lemma

The Margulis lemma gives a lower bound on the distance between
the axes of hyperbolic elements of a Kleinian group when one of the
hyperbolic elements has a short translation distance. In this section
we will derive an explicit form of this observation which applies to our
situation.

There is a universal constant ε3 > 0, called the Margulis constant,
such that any two infinite order elements of a Kleinian group Γ which
both translate some point x ∈ H3 by a distance less than ε3 lie in an
abelian subgroup of Γ (see [5, Chapter D] for more details.) Let γ be a
primitive hyperbolic element of a Kleinian group Γ and set

Zn
ε3(γ) = {x ∈ H3|d(x, γn(x)) < ε3}.

The Margulis tube for γ is then defined to be

Zε3(γ) = ∪n∈Z+Zn
ε3(γ).

If β ∈ Γ − 〈γ〉, then no nontrivial power of β commutes with a non-
trivial power of γ, so Zε3(β) ∩ Zε3(γ) = ∅. Moreover, since β(Zε3(γ)) =
Zε3(βγβ−1), it follows that β(Zε3(γ)) ∩ Zε3(γ) = ∅.

Proposition 10.1. There exist positive constants D1 and d1 with
the following property. Suppose that Γ is a Kleinian group, γ is a prim-
itive hyperbolic element in Γ with fixed points 0 and 1 and complex
translation length λ and α is a primitive hyperbolic element in Γ with
real translation length l(α) and fixed points t and ∞. If

|λ| ≤ D1e
−l(α)

2 ,

then
|t| ≥ d1

|λ|e
−l(α)

2 .
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Proof. Let λ = l + iθ. Then Z1
ε3(γ) is empty if l ≥ ε3 and otherwise

is a solid cylinder about Aγ with radius Rγ satisfying ([19, 1.3, p. 1283])

sinh2(Rγ) =
cosh ε3 − cosh l

cosh l − cos θ
.(5)

If D1 ≤ ε3
2 , then l ≤ ε3

2 , so

sinh2(Rγ) ≥
J0

cosh l − cos θ
,

where J0 = cosh ε3 − cosh ε3
2 . Moreover, if D1 ≤ 1, then |λ| ≤ 1. A

direct computation shows that cosh l ≤ 1 + l2 (when l < 1) and that
cos θ ≥ 1 − θ2/2, hence

cosh l − cos θ ≤ (1 + l2) − (1 − θ2/2) ≤ |λ|2.

We therefore have
e2Rγ

4
≥ sinh2(Rγ) ≥

J0

|λ|2 .

Therefore,

Rγ ≥ log
(

J1

|λ|

)
(6)

where J1 = 2
√

J0.
Let L be the unique common perpendicular to the axes Aγ and Aα,

with intersection points Qγ and Qα respectively. Since α(Zε3(γ)) does
not intersect Zε3(γ), Aα ∩ Z1

ε3(γ) has length less than l(α), so we may
conclude that

d(Qγ , Qα) ≥ Rγ − l(α)
2

.

If |t| < 2, then d(Qγ , Qα) < 5. If we choose

D1 = min
{

1,
ε3
2

,
J1

e5

}
,

then Equation (6) implies that

Rγ ≥ 5 +
l(α)
2

,

which implies that d(Qγ , Qα) ≥ 5. So we may assume that |t| ≥ 2.
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Let b denote the distance from Aα to the point x0 at height 1
2 above

the point 1
2 ∈ C. Basic hyperbolic geometry (see, for example, Section

7.20 in Beardon [4]) gives

sinh b = |2t − 1|.

Therefore, since b ≥ d(Qγ , Qα), |t| ≥ 2 and d(Qγ , Qα) ≥ 5, we get that

3|t| ≥ |2t − 1| ≥ sinh(d(Qγ , Qα)) ≥ ed(Qγ ,Qα)

4
.

So,

|t| ≥ ed(Qγ ,Qα)

12
≥ eRγe

−l(α)
2

12
≥ J1

12|λ|e
−l(α)

2 .

We then take d1 = J1
12 to complete the proof. q.e.d.

11. Bounds on the Theta operator

In this section, we will consider the pull-back φ of a quadratic dif-
ferential on the quotient torus associated to a test element. We restrict
φ to a seahorse associated to a pinching element and bound its image
under the corresponding Theta operator. We will later use this estimate
to bound the pairing of a Beltrami differential with φ on the seahorse.

Proposition 11.1. There exist positive constants D2 and D3 with
the following property. Suppose that Γ is a Kleinian group, α and γ are
non-commuting primitive hyperbolic elements of Γ, φ is the pull-back
to Ω(Γ) of a quadratic differential on T (α) and q is a fixed point of
α. Let A = A(γ, 1√

L
, q), B = B(γ, 1√

L
, q) and Θ = ΘB/A. If γ has a

representative in the conformal boundary of H3/Γ with length at most
L and

L ≤ D2e
−l(α)

2 ,

then
‖Θ(φ)‖A

‖φ‖B
≤ D3L.

Proof. We notice that we may first normalize the situation so that
the fixed points of γ are 0 and 1 and q = ∞. Let t denote the other fixed
point of α and let λ denote the complex length of γ. We notice that φ
must be a complex multiple of dz2

(z−t)2 . Since Θ is a linear operator we

may simply assume that φ = dz2

(z−t)2 .
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In order to apply Proposition 9.2, in the case where m = 1√
L
, we

need to produce bounds on |λ| and on t. The following result of Sugawa
allows us to translate our bounds on L into bounds on |λ|.

Proposition 11.2 (Proposition 6.1 of Sugawa [37]). If γ is a
hyperbolic element of a Kleinian group Γ with complex translation length
λ = l + iθ, which has a representative of length L in the conformal
boundary ∂cN , then

Le
L
2 ≥ |λ|2

2l
≥ |λ|

2
.

Since

M(γ) = 4π2Re
(

1
λ

)
=

4π2l

|λ|2 ,

Sugawa’s result implies that

1
M(γ)

=
|λ|2

4π2l
≤ Le

L
2

2π2
.

In particular, if L < 1, then, since 2π2

e
L
2

> 1,

M(γ) >
1
L

>
1√
L

.

Moreover, if L < 1
16π2 , then 1√

L
> 4π.

Sugawa’s result also implies that if L < 1 and L ≤ D1
2e e

−l(α)
2 , then

|λ| ≤ D1e
−l(α)

2 . Proposition 10.1 then implies that |t| ≥ d1
|λ|e

−l(α)
2 . In

order to apply Proposition 9.2 we need to check that |t| ≥ c4
|mλ| . Since

we have chosen m = 1√
L

this will hold if c4

√
L ≤ d1e

−l(α)
2 . So, if

L ≤ D2e−l(α), where

D2 = min

{
1

16π2
,
D1

2e
,

(
d1

c4

)2
}

,

then |t| ≥ c4
|mλ| and M(γ) > m > 4π. Proposition 9.2 then gives that

∥∥∥Θ
(

dz2

(z−t)2

)∥∥∥
A∥∥∥ dz2

(z−t)2

∥∥∥
B

≤ C4

(
m2

M(γ)2
+

m2

em/2

)
.
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Substituting m = 1√
L

and using the inequality 1
M(γ) ≤

√
e

2π2 L we conclude
that ∥∥∥Θ

(
dz2

(z−t)2

)∥∥∥
A∥∥∥ dz2

(z−t)2

∥∥∥
B

≤ C4

(
e

4π4
L +

1

Le
1

2
√

L

)
.

But, there exists a constant J2 > 0 such that 1

Le
1

2
√

L

≤ J2L for all L > 0.

Thus, if D3 = C4( e
4π4 + J2), then

∥∥∥Θ
(

dz2

(z−t)2

)∥∥∥
A∥∥∥ dz2

(z−t)2

∥∥∥
B

≤ D3L

and we have completed our proof. q.e.d.

12. Coralling the seahorses

We now begin the process of organizing the seahorses which will
contain the pre-image of the 2L-thin part. We first observe that, as
a consequence of the Margulis Lemma and McMullen’s bounds on the
diameter of a seahorse, the seahorses we are considering are not too
large when viewed from the point of view of our test element.

We introduce the notion of a standard fundamental domain in order
to make this claim precise. If α is a hyperbolic Möbius transformation,
we will say that an annulus F ⊂ Ĉ is a standard fundamental domain for
〈α〉 if it is bounded by 2 circles S1 and S2 = α(S1) and the hyperbolic
planes H1 and H2 bounded by S1 and S2 are each perpendicular to the
axis of α. We will show that if γ is represented by a short curve in
the conformal boundary and if the seahorse associated to γ intersects a
standard fundamental domain F for 〈α〉, then the seahorse is contained
in the union of F and the two adjacent standard fundamental domains
α(F ) and α−1(F ).

Lemma 12.1. Given d0 > 0 there exists D4 > 0 with the following
property. Suppose that Γ is a Kleinian group, α and γ are primitive
hyperbolic elements of Γ and q is a fixed point of α which is not a fixed
point of γ. Suppose that γ is represented by a curve of length at most L
in Ω(Γ)/Γ, where:

1. L ≤ D4e−l(α), and
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2. l(α) > d0.

If B(γ, 1√
L
, q) intersects a standard fundamental domain F for 〈α〉, then

B

(
γ,

1√
L

, q

)
⊂ α−1(F ) ∪ F ∪ α(F ).

Proof. We first normalize the situation so that γ has fixed points 0
and 1 and q = ∞. Let t be the other fixed point of α and let λ be the
complex translation length of γ.

Let F0 be the standard fundamental domain for 〈α〉 bounded by
circles about t of radius el(α)/2|t| and e−l(α)/2|t|. It is an easy calcula-
tion to show that the disk D centered at 0 of radius |t|(1 − e−l(α)/2) is
contained in F0. Since l(α) > d0, the radius of D is at least J3|t| where
J3 = 1−e−d0/2. We will show that we can choose D4 so as to guarantee
that B ⊂ D ⊂ F0.

If we assume that D4 ≤ D1
2e and that D4 ≤ 1, then then we may

apply Proposition 11.2 and the second assumption in the lemma to see
that

|λ| ≤ 2Le
L
2 < 2eL ≤ D1e

−l(α) < D1e
−l(α)

2 .

Proposition 10.1 implies that

|t| ≥ d1

|λ|e
−l(α)

2 .

Hence,

radius(D) ≥ J3d1

|λ| e
−l(α)

2 .

On the other hand, Proposition 8.1 gives that

diam(B) ≤ C1

√
L

|λ| .

If, in addition, D4 ≤
(

J3d1
C1

)2
, then

L ≤
(

J3d1

C1

)2

e−l(α),

which implies that
C1

√
L ≤ J3d1e

−l(α)
2 .
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So the diameter of B is less than the radius of D, which implies that
B ⊂ D ⊂ F0 But since F and F0 are intersecting standard fundamental
domains, F0 ⊂ α−1(F ) ∪ F ∪ α(F ) and B ⊂ α−1(F ) ∪ F ∪ α(F ) as
claimed. Hence we have established the theorem if we take

D4 = min

{
D1

2e
, 1,

(
J3d1

C1

)2
}

.

q.e.d.

Proposition 8.1 assures us that the area of B(γ, 1√
L
, q) is comparable

to the area of B(γ, 2√
L
, q). We will also need to know that ‖φ‖B(γ, 1√

L
,q)

is comparable to ‖φ‖B(γ, 2√
L

,q), where φ and γ are as in Proposition 11.1.

Lemma 12.2. There exists a positive constant C5 with the fol-
lowing property. Suppose that Γ is a Kleinian group, α and γ are non-
commuting primitive hyperbolic elements of Γ, φ is the pull-back of a
quadratic differential on T (α) and q is a fixed point of α. Suppose that
γ is represented by a curve of length at most L in Ω(Γ)/Γ, with

L ≤ D2e
−l(α)

2 ,

where D2 is the constant in Proposition 11.1. Then

‖φ‖B(γ, 1√
L

,q) ≤ C5‖φ‖B(γ, 2√
L

,q).

Proof. As in the proof of Proposition 11.1, we may normalize so
that that the fixed points of γ are 0 and 1, q = ∞ and φ = dz2

(z−t)2

where t is a fixed point of α. In the proof of Proposition 11.1, we saw
that if L ≤ D2e

−l(α)
2 and we choose m = 1√

L
, then |t| ≥ c4

|mλ| and
M(γ) > m > 4π.

In the proof of Proposition 9.2, we saw that this guaranteed that
2|t| ≥ |z − t| ≥ |t|/2 for all z ∈ B(γ, 1√

L
, q). In particular,

‖φ‖B(γ, 1√
L

,q) ≤
4
|t|2 area

(
B

(
γ,

1√
L

, q

))

and

‖φ‖B(γ, 2√
L

,q) ≥
1

4|t|2 area
(

B

(
γ,

2√
L

, q

))
.
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Since L ≤ D2e
−l(α)

2 guarantees that L < 1, Proposition 11.2 gives
that

M(γ) ≥ 2π2

Le
L
2

≥ 4√
L

.

Therefore, we may apply Proposition 8.1 to see that

C2

(
C1

√
L

|λ|

)2

> area
(

B

(
γ,

1√
L

, q

))

and that

c2

(
c1

√
L

2|λ|

)2

< area
(

B

(
γ,

2√
L

, q

))
.

It follows that

‖φ‖B(γ, 1√
L

,q) ≤ 64
(

C2C2
1

c2c2
1

)
‖φ‖B(γ, 2√

L
,q).

Hence, the lemma holds with C5 = 64
(

C2C2
1

c2c21

)
. q.e.d.

13. Organizing the seahorses

Let Γ be a discrete torsion-free Kleinian group and let C be a disjoint
pinchable collection of simple closed geodesics in the conformal bound-
ary of H3/Γ. Let G be the Γ-invariant collection of primitive hyperbolic
elements of Γ which are represented by some geodesic in C. Recall that
since C is pinchable, the curves in C are associated to distinct conjugacy
class of primitive hyperbolic elements of Γ.

In the proof of our main local estimate we will consider the collection
∪γ∈GB(γ, 2√

L
, q). This collection of seahorses will contain the support

of the lift µ̃ of the Beltrami differential µ in that estimate. We will be
pairing µ̃ with a quadratic differential φ and we would like to estimate
the contribution to the pairing on each seahorse and then sum to obtain
our estimate. However, these seahorses need not be disjoint, so we
will encounter difficulties when attempting to sum our estimates on the
individual seahorses.

In Theorem 4.5 of [32], McMullen shows how to find a subset G′ of
G and a collection of disjoint sets {Eγ}γ∈G′ covering ∪γ∈GB(γ, 2√

L
, q),

such that, for all γ ∈ G′, Eγ is γ-invariant, contains B(γ, 2√
L
, q) and is
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contained in B(γ, 1√
L
, q). We will then be able to look at the restriction

of the Beltrami differential to Eγ for all γ ∈ G′, perform estimates in
B(γ, 1√

L
, q) and sum these estimates to obtain the desired bounds.

The following theorem is essentially a version of Theorem 4.5 in [32].

Theorem 13.1 (McMullen). Given d0 > 0 there exists D5 > 0
with the following property. Suppose that Γ is a Kleinian group and G is
a Γ-invariant collection of primitive hyperbolic elements of Γ constructed
from a pinchable collection C of geodesics as above. Suppose that q ∈ Ĉ
is a fixed point of a primitive hyperbolic element α ∈ Γ which is not a
fixed point of any element in G. If each element of C has length at most
L, where

1. L ≤ D5e−l(α), and

2. l(α) ≥ d0,

then there exists a subset G′ of G and γ-invariant sets {Eγ}γ∈G′ such
that:

1. Eγ ∩ Eγ′ = ∅ for distinct elements γ, γ′ ∈ G′,

2.

B

(
γ,

2√
L

, q

)
⊂ Eγ ⊂ B

(
γ,

1√
L

, q

)

for all γ ∈ G′, and

3.

∪γ∈GB

(
γ,

2√
L

, q

)
⊂ ∪γ∈G′Eγ .

Remark. In this remark, we simply indicate the mild changes
needed to establish our version of McMullen’s result. McMullen’s proof
goes through exactly as written to show that there exists a uniform
constant J4 such that if 2√

L
> J4, then there exists a collection of

γ-invariant sets {Eγ}γ∈G such that

B

(
γ,

2√
L

, q

)
⊂ Eγ ⊂ B

(
γ,

1√
L

, q

)

for all γ ∈ G and such that if two of the sets Eγ1 and Eγ2 intersect,
then one is a subset of the other. Moreover, he shows that there ex-
ists some constant C6 > 1 such that if Eγ1 ⊂ Eγ2 , then diam(Eγ2) ≥
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C6diam(Eγ1). In his setting, McMullen uses the fact that the union of
the seahorses is bounded to see that one can choose a collection of max-
imal elements of {Eγ}γ∈G (with respect to inclusion). This collection of
maximal elements forms the desired {Eγ}γ∈G′ .

In our situation, ∪γ∈GB(γ, 2√
L
, q) is not bounded. However, given

d0 > 0, Lemma 12.1 provides D4 > 0 such that if L ≤ D4e−l(α), γ0 ∈ G
and B(γ0, 2√

L
, q) intersects a standard fundamental domain F for 〈α〉,

then B(γ0, 1√
L
, q), and hence Eγ0 , is contained in α(F )∪F ∪α−1(F ). It

follows that any nested ascending sequence in {Eγ}γ∈G , which contains
B(γ0, 2√

L
, q) is contained in α(F ) ∪ F ∪ α−1(F ) and is thus bounded.

So we can again choose a collection of maximal elements of {Eγ}γ∈G .
Hence, our version of McMullen’s theorem holds if we choose

D5 = min

{
D4,

(
2
J4

)2
}

.

14. The main local estimate

In this section we give the proof of the main local estimate, The-
orem 14.1. We have already indicated, in Sections 5 and 6, how this
estimate is used to establish our main result.

We recall that if M is a compact oriented 3-manifold and a is a
primitive element of π1(M), then Υa : CC0(M) → CC0(S1 × D2) is
defined by letting Υa([ρ]) be the conjugacy class of the restriction ρa of
ρ to 〈a〉. The map Υa essentially records the complex length of ρ(a). In
the following estimate we think of the unit norm Beltrami differential
µ as a representative of a tangent vector to CC0(M) at a point [ρ].
Our estimate asserts that if µ is supported on the 2L-thin part of ∂cNρ,
l(ρ(a)) is not small and L is small enough, then DΥa(DΦ(µ)) has length
at most O(L). We interpret this as saying that if one deforms [ρ] in the
direction determined by µ, then the complex length of the image of a
changes very little.

Theorem 14.1. Given d0 > 0, there exists D6 > 0 and K0 > 0
with the following properties. Suppose that M is a compact, oriented
3-manifold, a is a primitive element in π1(M), [ρ] ∈ CC0(M) and
l(ρ(a)) > d0. Suppose that C is a pinchable collection of disjoint simple
closed geodesics in ∂cNρ, none of which represents ρ(a), such that each
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element of C has length at most L where

L ≤ D6e
−l(ρ(a)).

If µ is a unit-norm Beltrami differential on ∂cNρ which is supported on
the union of the 2L-thin parts associated to elements of C, then

‖DΥa(DΦ(µ))‖ ≤ K0L.

Proof. Let G denote the collection of primitive hyperbolic elements
of Γ = ρ(π1(M)) which are represented by elements of C. Let q be a
fixed point of α = ρ(a). If we assume that D6 ≤ D5 , then Theorem 13.1
provides a subset G′ of G and a disjoint collection of γ-invariant subsets
{Eγ}γ∈G′ such that

B

(
γ,

2√
L

, q

)
⊂ Eγ ⊂ B

(
γ,

1√
L

, q

)

for all γ ∈ G′, and

∪γ∈GB

(
γ,

2√
L

, q

)
⊂ ∪γ∈G′Eγ .

Let µ̃ be the lift of µ to Ω(Γ) and let Bγ = B(γ, 1√
L
, q) and Aγ =

A(γ, 1√
L
, q). We first prove that µ̃ is supported on ∪γ∈GB(γ, 2√

L
, q).

Lemma 14.2. There exists a constant J6 such that if L < J6, then
the Beltrami differential µ̃ is supported on ∪γ∈GB(γ, 2√

L
, q).

Proof. Let ε2 denote the 2-dimensional Margulis constant. We will
assume that 2L < ε2.

Suppose that z is contained in the support of µ̃. Since µ is supported
on the 2L-thin part associated to the pinchable collection of geodesics
C, there exists an annular component Q′ of the 2L-thin part of ∂cNρ

containing p(z), where p : H3∪Ω(Γ) → Nρ is the obvious covering map.
Let η be the geodesic contained in Q′ and let S denote the component
of the pre-image of Q′ which contains z. There exists an element γ ∈ G,
which is represented by η, such that S is γ-invariant. We will show that
z ∈ B(γ, 2√

L
, q).

Let Q be the component of the ε2-thin part of ∂cNρ containing η.
One may compute, as in Maskit [31], that the modulus of each compo-
nent of Q − Q′ is 2π(θ1−θ2)

l(η) where

cos θ1 =
sinh(l(η)/2)

sinh(ε2)
and cos θ2 =

sinh(l(η)/2)
sinh(2L)

.
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One may use basic trigonometric formulas to show that there exists
positive constants J7 and C7 such that if L ≤ J7 then θ1 − θ2 ≥ C7l(η)

L .
Therefore, in this case, the modulus of each component of Q − Q′ is at
least 2πC7

L .
The annuli Q and Q′ lift to annuli Q̃ and Q̃′ in Tγ and p−1

γ (Q̃′) = S
where pγ : Ωγ → Tγ is the obvious covering map. Since q does not lie
in Ω(Γ), pγ(q) does not lie in Q̃. Lemma 5.1 of [32] guarantees that
there exists a constant J8 such that, if 2πC7

L > J8, then each component
of Q̃ − Q̃′ contains a right cylinder of modulus at least 2πC7

L − J8. If
L < πC7

J8
, then each component of Q̃ − Q̃′ contains a right cylinder of

modulus πC7
L . Let R1 and R2 denote these right cylinders.

The annulus Ac(γ, 2√
L
, q) = Tγ − A(γ, 2√

L
, q) is a right cylinder of

modulus 2√
L
. It is easy to check that no Euclidean torus contains two

right cylinders of modulus more than 4π which are not homotopic, so if
L < min{C7

4 , 1
4π2 }, then Ac(γ, 2√

L
, q), R1 and R2 must all be homotopic

right cylinders. If Q̃′ intersects Ac(γ, 2√
L
, q), then, since pγ(q) does not

lie in Q̃, either R1 or R2 is contained entirely in Ac(γ, 2√
L
, q), which

implies that 2√
L
≥ πC7

L . However, this is impossible if we assume that

L <
π2C2

7
4 . Thus if we take

J6 = min
{
ε2
2

, J7,
πC7

J8
,
C7

4
,

1
4π2

,
π2C7

5

}

and assume L < J6, then Q̃′ ⊂ A(γ, 2√
L
, q) which in turn implies that

z ∈ S = p−1
γ (Q̃′) ⊂ p−1

γ

(
A

(
γ,

2√
L

, q

))
= B

(
γ,

2√
L

, q

)

as desired. q.e.d.

It follows that if D6 ≤ J6, then the support of µ̃ is contained in
∪γ∈G′Eγ .

We recall that

‖DΥa(DΦ(µ))‖ = sup
{〈
φ, dΥ̂a(µ)

〉
| φ ∈ Q(T (ρ(a))), ‖φ‖ = 1

}
.

So let φ be a unit norm quadratic differential on T (ρ(a)) and let φ denote
its pull-back to Ω(〈ρ(a)〉). If F is a standard fundamental domain for
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〈ρ(a)〉, then since µ̃ is a lift of DΥ̂a(µ) (see the end of Section 2.3),

〈
φ, DΥ̂a(µ)

〉
= Re

(∫

F
φµ̃

)
≤
∣∣∣∣
∫

F
φµ̃

∣∣∣∣ .

Let νγ be the restriction of µ̃ to Eγ . Then, νγ is a γ-invariant
Beltrami differential of norm at most 1. We will estimate the integral
above by estimating the integral over each Eγ and summing. For each
γ ∈ G′, let Θγ = ΘBγ/Aγ

. The duality expressed in Equation (4), see
Section 9, gives that

∣∣∣∣∣

∫

Eγ

φµ̃

∣∣∣∣∣ =

∣∣∣∣∣

∫

Bγ

νγφ

∣∣∣∣∣ ≤ ||Θγ(φ)||Aγ
.

If we assume that D6 ≤ D2, then Proposition 11.1 implies that

||Θγ(φ)||Aγ
≤ D3L ‖φ‖Bγ

.

Let G′′ be the set of elements γ ∈ G′ with the property that Eγ ∩ F
is nonempty. Then

∣∣∣∣
∫

F
φµ̃

∣∣∣∣ ≤
∑

γ∈G′′

∣∣∣∣∣

∫

Eγ

φµ̃

∣∣∣∣∣ ≤ D3L
∑

γ∈G′′

||φ||Bγ
.

Lemma 12.2 implies that if D6 ≤ D2, then

‖φ‖Bγ
≤ C5 ‖φ‖B(γ, 2√

L
,q) .

Since B(γ, 2√
L
, q) ⊂ Eγ ⊂ Bγ , this implies that

||φ||Bγ
≤ C5 ||φ||Eγ

.

Lemma 12.1 implies that if D6 ≤ D4 and γ ∈ G′′, then

Eγ ⊂ B(γ,
1√
L

, q) ⊂ α−1(F ) ∪ F ∪ α(F ).

Since the {Eγ} are pairwise disjoint and ∪γ∈G′′Eγ ⊂ α−1(F )∪F ∪α(F ),
∑

γ∈G′′

||φ||Eγ
≤ 3.
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Therefore, 〈
φ, DΥ̂a(µ)

〉
≤
∣∣∣∣
∫

F
φµ̃

∣∣∣∣ ≤ 3D3C5L.

Since this holds for an arbitrary unit norm quadratic differential on
T (α), the theorem holds if we choose D6 = min {D2, D4, D5, J6} and
K0 = 3D3C5. q.e.d.

15. Corollaries

If Hg is a handlebody of genus g ≥ 2, then Marden (see Section 7.4 of
[29]) observed that there is a dense set of conjugacy classes in ∂CC0(Hg)
whose associated representations have empty domain of discontinuity.
The following corollary is then immediate from our main result.

Corollary 15.1. If Hg is a handlebody of genus g ≥ 2, then
maximal cusps are dense in the boundary of Schottky space CC0(Hg).

If ∂M is connected, then we may similarly observe that there is a
dense set D of conjugacy classes in ∂CC(M) such that if [ρ] ∈ D, then
Ω(ρ) = ∅.

Lemma 15.2. Let M be a compact, oriented, irreducible, atoroidal
3-manifold whose (nonempty) boundary is a connected surface which is
not a torus. If D is the set of conjugacy classes of purely hyperbolic rep-
resentations in ∂CC0(M), then D is dense in ∂CC0(M). Furthermore,
if [ρ] ∈ D, then Ω(ρ) = ∅.

Proof. It will be convenient to work in the pre-image ĈC0(M) of
CC0(M) in the full representation variety R̂ = Hom(π1(M),PSL2(C)).
Since ĈC0(M) is a PSL2(C)-bundle over CC0(M) it suffices to prove
that the set D̂ of purely hyperbolic representations in ∂ĈC0(M) is dense
and that if ρ ∈ D̂, then Ω(ρ) = ∅.

The proof relies on two foundational results about the topology of
ĈC0(M). Sullivan [39] proved that ĈC0(M) is the interior of its closure
in the representation variety. Kapovich [26] proved that every point in
the closure of ĈC0(M) is a smooth point of R̂.

We first show that D̂ is dense in ∂ĈC0(M). If ρ0 ∈ ∂ĈC0(M)
does not lie in the closure of D̂, then ρ0 has a smooth, connected open
neighborhood U in R̂ such that U ∩ ∂ĈC0(M) ⊂ X, where X ⊂ R̂
is the set of all representations ρ : π1(M) → PSL2(C) such that ρ(γ)
is parabolic or the identity for some nontrivial γ ∈ π1(M). Note that
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X is a countable union of complex algebraic subsets of R̂, and that
X ∩ ĈC0(M) = ∅, so that U 2⊂ X. Hence if R̂0 denotes the irreducible
component of R̂ containing U , the set X0 = X∩R̂0 is a countable union
of proper complex algebraic subvarieties of R̂0. Since U ⊂ R̂0 is smooth
and connected, W = U − (U ∩ X) is a connected, dense subset of U .
As W meets ĈC0(M) but is disjoint from ∂ĈC0(M), connectedness
guarantees that W ⊂ ĈC0(M). Hence U is contained in the closure of
ĈC0(M) in R̂. But, since ĈC0(M) is the interior of its closure, this
implies that ρ lies in the interior of ĈC0(M), which is a contradiction.

Now suppose that ρ ∈ D̂ and Ω(ρ) is nonempty. There exists a se-
quence (ρi) in ĈC0(M) converging to ρ. Since ρ is purely hyperbolic
and Ω(ρ) is nonempty, Theorem E of Anderson-Canary [1] implies that
(ρi) converges strongly to ρ (i.e., that (ρi(π1(M))) converges geomet-
rically to ρ(π1(M).) The main theorem of Canary-Minsky [13] then
implies that there is a homeomorphism from the interior of M to Nρ.
In particular, Nρ has only one end. Since Ω(ρ) is nonempty, the one end
of Nρ must be geometrically finite, so Nρ is convex cocompact. Thus, ρ
is a convex cocompact uniformization of M and hence lies in ĈC0(M)
which is again a contradiction. Therefore, if ρ ∈ D̂, then Ω(ρ) = ∅ as
desired. q.e.d.

Combining this observation with our main result we obtain the de-
sired generalization of Corollary 15.1.

Corollary 15.3. Let M be a compact, oriented, irreducible, ato-
roidal 3-manifold whose (nonempty) boundary is a connected surface
which is not a torus. Then maximal cusps are dense in the boundary of
CC0(M).

As another corollary of our results we see that hyperbolic 3-manifolds
with arbitrarily short geodesics are dense in ∂CC0(M).

Corollary 15.4. Let M be a compact, oriented, irreducible, ato-
roidal 3-manifold whose (nonempty) boundary is a connected surface
which is not a torus. The set S in ∂CC0(M) consisting of all [ρ] ∈
S such that Nρ contains arbitrarily short geodesics, is a dense Gδ in
∂CC0(M).

Proof. If g is an element of π1(M) which represents a simple closed
curve in ∂M , then l[ρ](g), the real translation length of ρ(g), is a non-
constant real analytic function on AH(π1(M)). Therefore, the set Un

of conjugacy classes in ∂CC0(M) whose associated manifolds contained
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a closed geodesic of length at most 1
n is open in ∂CC0(M). Since, by

Corollary 15.3, maximal cusps are dense in ∂CC0(M), Un is also dense
in ∂CC0(M). The Baire category theorem then applies to show that S
is a dense Gδ in ∂CC0(M). q.e.d.

16. Pared manifolds

In this section, we will explain how to extend our main result to the
setting of deformation spaces of general geometrically finite Kleinian
groups. In particular, we extend our results to the setting where our
manifold M is allowed to have a toroidal boundary component. In order
to do so, we introduce the formalism of pared manifolds.

Definition 16.1 ([34]). A pared manifold is a pair (M, P ), where:

• M is a compact, irreducible 3-manifold, and

• P ⊂ ∂M is a union of incompressible annuli and tori,

such that:

1. If A is an abelian subgroup of π1(M) which is not cyclic, then A
is conjugate into the fundamental group of a component of P , and

2. every map φ : (S1 × I, S1 × ∂I) → (M, P ) that is injective on the
fundamental groups, is homotopic, as a map of pairs, into P .

A representation ρ : π1(M) → PSL2(C) is a geometrically finite uni-
formization of the pared manifold (M, P ) if there exists a homeomor-
phism h : M −P → Nρ such that [h∗] = [ρ]. Let GF0(M, P ) denote the
space of (conjugacy classes of) geometrically finite uniformizations of
(M, P ). The space GF0(M, P ) may be identified with an open subset of
the space of conjugacy classes of representations of π1(M) in which each
element of π1(P ) is taken to a parabolic element or the identity. If we
let Mod0(M, P ) denote the group of isotopy classes of pared homeomor-
phisms of (M, P ) which are homotopic to the identity, then GF0(M, P )
may be identified with the quotient of T (∂M − P ) by Mod0(M, P ).

A conjugacy class [ρ] ∈ AH(π1(M)) is said to be a maximal cusp if
there exists a homeomorphism h : M ′ − P ′ → Nρ such that (M ′, P ′) is
a pared 3-manifold and each component of ∂M ′ − P ′ is an open pair of
pants. Our main results generalizes to the setting of pared 3-manifolds
as follows:
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Theorem 16.2. Let (M, P ) be any pared 3-manifold. If [ρ] ∈
∂GF0(M, P ) and Ω(ρ) = ∅, then [ρ] may be approximated by maximal
cusps in ∂GF0(M, P ).

The proof of Theorem 16.2 is largely an immediate generalization
of the proof of our main theorem. The main technical difference comes
in the definition of a pinchable pants decomposition and in the proof of
Proposition 3.1.

Suppose that [ρ] ∈ GF0(M, P ) and h : M−P → Nρ is an orientation-
preserving homeomorphism. If A is a collection of disjoint simple closed
geodesics in ∂cNρ, then let N (h−1(A)) be a closed regular neighborhood
of h−1(A). We say that A is pinchable if (M, P ∪N (h−1(A))) is a pared
3-manifold. One may readily check that this is equivalent to our original
definition when P = ∅.

In the generalization of Proposition 3.1 one assumes that (ρn) is a
sequence of geometrically finite uniformizations of a pared 3-manifold
(M, P ), such that (ρn) converges to ρ and Ω(ρ) = ∅. One proves that
if Cn is a collection of disjoint simple closed geodesics in ∂cNρn and
l(Cn) < K for all n, then Cn is pinchable for all sufficiently large n. Let
δ and S be chosen as in the original proof and let hn : M − P → Nρn

be an orientation-preserving homeomorphism, for each n. The original
proof of Proposition 3.1 must only be modified to rule out essential
annuli in M with one boundary component in h−1

n (Cn) and the other
boundary component in P . To do so, one considers the εn-thick part
C(Nρn)thick(εn) of the convex core, where εn is chosen to be much less
than δ and less than the length of the shortest closed geodesic in Nρn .
Any essential annulus with one boundary component in h−1

n (Cn) and
the other boundary component in P gives rise to an essential annulus
B′

n in C(Nρn)thick(εn) with one boundary component which is a curve
in ∂C(Nn), of length at most K ′ = 45Ke

K
2 , which is homotopic to a

component of rn(Cn) and the other boundary component lies in the
portion of ∂C(Nρn)thick(εn) which abuts the εn-thin part of Nρn . One
again constructs an annulus Yn which is homotopic rel boundary to B′

n

and shows that the distance from the basepoint to ∂Yn ∩ ∂C(Nρn) is
uniformly bounded by a constant which depends only on δ and S. More
details on the generalization of Proposition 3.1 and our main theorem
can be found in [11].

The following lemma is the natural generalization of Lemma 15.2
to this setting. We will say that representation ρ ∈ ∂GF0(M, P ) is
minimally parabolic if, for all g ∈ π1(M), ρ(g) is parabolic if and only if
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g is conjugate to an element of π1(P ).

Lemma 16.3. Let (M, P ) be a pared 3-manifold such that ∂M−P
is connected. If D is the set of minimally parabolic representations in
∂GF0(M, P ), then D is dense in ∂GF0(M, P ). Furthermore, if ρ ∈ D,
then Ω(ρ) = ∅.

Proof. In this situation one lets R̂ ⊂ Hom(π1(M),PSL2(C)) consist
of the homomorphisms such that the image of any element of π1(P ) is
either parabolic or the identity. Then, ĜF 0(M, P ) is the pre-image of
GF0(M, P ) in R̂ and D̂ is the pre-image of D in R̂. The proof that the
set D̂ of minimally parabolic representations in ∂ĜF 0(M, P ) is dense
in ∂ĜF 0(M, P ) is virtually the same as the proof that D̂ is dense in
∂ĈC0(M) given in Lemma 15.2.

In order to prove that Ω(ρ) = ∅ if ρ ∈ D̂ we follow the same outline
as in the proof of Lemma 15.2. Suppose that ρ ∈ D̂ and Ω(ρ) 2= ∅. The
main theorem of Anderson-Canary [2] implies that any sequence (ρi) in
ĜF 0(M, P ) which converges algebraically to ρ also converges strongly.
Let ε be a positive constant which is less than the Margulis constant and
let N0

ρ be obtained from Nρ be removing all the noncompact(cuspidal)
components of its ε-thin part. A recent result of Evans [22] implies that
there exists a relative compact core (M ′, P ′) for N0

ρ and an orientation-
preserving homeomorphism h′ : (M, P ) → (M ′, P ′) such that (h′)∗ = ρ.
(A relative compact core (M ′, P ′) for N0

ρ is a compact core M ′ for N0
ρ

whose intersection P ′ with ∂N0
ρ is a collection of compact cores for the

components of ∂N0
ρ , one for each component.) In particular, N0

ρ has
only one end. Since, Ω(ρ) is nonempty, that end must be geometrically
finite. It follows that ρ is geometrically finite.

Marden’s Stability theorem [28] implies that, since ρ is geometrically
finite and minimally parabolic, there is a neighborhood of ρ in R̂ con-
sisting of representations quasiconformally conjugate to ρ. Since ρ is a
limit of representations in ĜF 0(M, P ), it follows that ρ ∈ ĜF 0(M, P ),
which is a contradiction. q.e.d.

We thus obtain the following natural generalization of Corollary 15.3:

Corollary 16.4. Let (M, P ) be a pared 3-manifold such that
∂M − P is connected. Then maximal cusps are dense in the bound-
ary of GF0(M, P ).

We recall that any torsion-free geometrically finite Kleinian group
may be thought of as the image of a geometrically finite uniformiza-
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tion of some pared 3-manifold (M, P ) (see Corollary 10.6 in Morgan
[34].) Its quasiconformal deformation space may then be identified with
GF0(M, P ). So, one may summarize Corollary 16.4 by saying that if
the conformal boundary of any torsion-free geometrically finite Kleinian
group is connected, then maximal cusps are dense in the boundary of
its quasiconformal deformation space.

We also get an analogue of Corollary 15.4:

Corollary 16.5. Let (M, P ) be a pared 3-manifold such that
∂M−P is connected. Then the set of conjugacy classes [ρ] ∈ ∂GF0(M, P )
such that Nρ contains arbitrarily short geodesics is a dense Gδ subset of
∂GF0(M, P ).
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