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POINCARÉ INEQUALITY ON COMPLETE RIEMANNIAN

MANIFOLDS WITH RICCI CURVATURE BOUNDED BELOW

Gérard Besson, Gilles Courtois, and Sa’ar Hersonsky

Abstract. We prove that complete Riemannian manifolds with polynomial growth and
Ricci curvature bounded from below, admit uniform Poincaré inequalities. A global, uni-
form Poincaré inequality for horospheres in the universal cover of a closed, n-dimensional
Riemannian manifold with pinched negative sectional curvature follows as a corollary.

0. Introduction

Statements of the main results. In this paper, we will establish that complete Rie-
mannian manifolds with Ricci curvature bounded below and having polynomial growth,
admit a family of uniform Poincaré inequalities. To begin with, let (Mn, g) be a com-
plete n-dimensional Riemannian manifold. Henceforth, we will assume that (Mn, g)
satisfies the Ricci curvature lower bound

(0.1) Ricci(Mn,g) ≥ −(n− 1)κ, for some κ ≥ 0.

We will also assume that (Mn, g) has α-polynomial growth; this means that there
exist constants v > 0, α > 0 and R0 ≥ 0 such that for any m ∈Mn and R > R0, the
ball of radius R centered at m satisfies

(0.2) volB(m,R) ≤ vRα,

where vol denotes the canonical measure on (Mn, g). Recall that Bishop’s Comparison
Theorem (cf. [15, Section IV]) implies that when κ = 0, (Mn, g) satisfies polynomial
growth with α = n.

We will finally assume that the local geometry of (Mn, g) is controled in the sense
that there exists a constant ω > 0 such that for any m ∈Mn,

(0.3) volB(m, 1) ≥ ω.

The triple (Mn, dist, vol) with dist being the standard metric induced by the Rie-
mannian metric is an example of a metric measure space. Throughout this paper
(X, ρ, µ) will denote a metric space endowed with a Borel measure µ. We will use the
notation

(0.4) uA =
1

µ(A)

∫

A

udµ,
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for every A ⊂ X and measurable function u : X → [−∞,∞], and when A is a ball
B(m,R), we will abuse the notation and write

(0.5) uR =
1

µ(B(m,R))

∫

B(m,R)

udµ.

We will say that a Riemannian manifold (Mn, g) satisfies a (σ, β, σ)-uniform (with
respect to balls) Poincaré inequality, for σ ≥ 1, if there exists a constant C such that
for any r0 > 0, there exists a constant K such that for any u ∈ C1(Mn), any R ≥ r0
and any ball B(m,R) ⊂Mn, we have

(0.6)

∫

B(m,R)

|u(x)− uR|σdvol(x) ≤ KRβ

∫

B(m,CR)

|∇u(x)|σdvol(x).

Our main result is the following:

Theorem 0.7 (Main Theorem). Let (Mn, g) be a complete Riemannian manifold
satisfying the Ricci curvature bound (0.1), the α-polynomial growth assumption (0.2)
and the assumption (0.3). Then, there exists a constant C = C(n, κ) such that for
any σ ≥ 1 and r0 > 0, there exists a constant K = K(n, σ, r0, R0, κ, v, ω) such that
for any u ∈ C1(Mn), any R ≥ r0 and any ball B(m,R) ⊂Mn, we have

(0.8)

∫

B(m,R)

|u(x)− uR|σdvol(x) ≤ KRα+σ−1

∫

B(m,CR)

|∇u(x)|σdvol(x),

where uR = uB(m,R).

This theorem is meaningful for large balls. Indeed, since balls of small radii in
(Mn, g) are asymptotically Euclidean, they carry (σ, σ, σ)-uniform Poincaré inequal-
ities for σ ≥ 1. This is the reason for the restriction to balls of radius R ≥ r0, and it
also explains why the constant K depends, among other geometric quantities, on r0.
The local geometry assumption (0.3) is necessary as we can easily see by considering
manifolds with arbitrary long and thin dumbells.

The exponent of R in the above Theorem is optimal. For every α ∈ N, α ≥ 1,
we construct examples of complete Riemannian manifolds (Mn, g) with α-polynomial
growth volB(m,R) ≤ vRα and Ricci curvature bounded below, Ricci ≥ −(n − 1)κ
such that there exist a function u : Mn → R such that for any constants C > 0,
σ ≥ 1, and any β < α+ σ − 1,

(0.9) lim
R→∞

(

∫

B(R)

|u− uR|σ
)(

Rβ

∫

B(CR)

|∇(u)|σ
)−1

= ∞,

see section 5.

Remark 0.10. Note that the constants of the Poincaré inequality are uniform among
the set of all Riemannian manifolds with the same Ricci curvature lower bound and
polynomial growth of order α.

Next we apply our main theorem to special types of hypersurfaces. Let M̃ be the
universal cover of a closed, complete, n-dimensional Riemannian manifold, (Mn, g),
whose sectional curvature satisfies

(0.11) −b2 ≤ Kg ≤ −a2,
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where a, b are fixed positive constants. We will show that horospheres in M̃ satisfy a
uniform and global Poincaré inequality (0.6), where global means that the inequalities
hold independently of the horosphere.

Corollary 0.12. There exist positive constants C and K, as in Theorem 0.7, de-
pending only on n, σ, a and b, such that every horosphere H in M̃ , endowed with the
induced Riemannian metric, satisfies inequality (0.8) with

(0.13) α =
(n− 1)b

a
.

Perspective. Poincaré inequalities are central in the study of the geometrical analysis
of manifolds. It is well known that carrying a Poincaré inequality has strong geometric
consequences. For instance, a complete, doubling, non-compact, Riemannian manifold
admitting a (1, 1, 1)-uniform Poincaré inequality satisfies an isoperimetric inequality.
Moreover, a (2, 2, 2)-uniform Poincaré inequality is equivalent to Gaussian estimates
for the heat kernel, [5], [8]. For comprehensive and detailed accounts of the subject,
the reader is advised to consult for example [9] and [16].

To put our main theorem in perspective, let us recall a few classical results. The
following theorem follows, for instance, from Buser’s inequality, [1] (and an application
of Minkowski inequality).

Theorem 0.14. Assume that Mn has Ricci curvature bounded below by −(n− 1)κ.
Then, for all R > 0 and for all σ ≥ 1, there exists a constant C(n,R, κ) such that for
all u ∈ C1(M) and for all m ∈M , we have

(0.15)

∫

B(m,R)

|u(x)− uR|σdvol(x) ≤ C(n,R, κ)

∫

B(m,3R)

|∇u(x)|σdvol(x),

where uR = uB(m,R).

A manifold for which (0.15) holds is said to carry a local Poincare inequality. For
the proof see [2, Chapter VI.5], or [10, Lemma 2.9] for a different proof based on the
Cheeger-Colding segment inequality, or [16, Theorem 5.6.6]. In fact, by [9, Section
10.1], and under the same assumptions, the following holds:

(0.16)

∫

B(m,R)

|u− uR|dvol ≤ C(n) exp ((n− 1)κR)R

∫

B(m,R)

|∇u|dvol.

Hence, when (Mn, g) has non-negative Ricci curvature, (i.e., a bound (0.1) with κ =
0), then for every σ ≥ 1, (Mn, g) satisfies a (σ, σ, σ)-uniform Poincaré inequality: For
every R > 0,

(0.17)

∫

B(m,R)

|u− uR|σdvol ≤ K(n, σ)Rσ

∫

B(m,2R)

|∇u|σdvol

(cf. [16, Theorem 5.6.6]).

Remark 0.18. The constants which appear above do not depend on the point m.
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Another important class of examples occur when (Mn, g) is a unimodular connected
Lie group equipped with a left invariant metric. Then, for every σ ≥ 1, the following
Poincaré inequality is known to hold (cf. [16, page 173]):

(0.19)

∫

B(m,R)

|u− uR|σdvol ≤ (2R)σ
volB(2R)

volB(R))

∫

B(m,R)

|∇u|σdvol.

Moreover, if the left invariant metric is doubling, (i.e., if there exists a constant C
such that for any R > 0, volB(2R) ≤ CvolB(R), then for every σ ≥ 1, such a Lie
group satisfies a (σ, σ, σ)-uniform Poincaré inequality [16, Theorem 5.6.1]:

(0.20)

∫

B(m,R)

|u− uR|σdvol ≤ C(2R)σ
∫

B(m,R)

|∇u|σdvol.

Lie groups equipped with doubling left invariant metric have polynomial growth
and examples of such groups are nilpotent ones. In [14], Kleiner proved analogous
Poincaré inequalities to (0.19) and (0.20) for discrete finitely generated groups. Be-
sides manifolds of non-negative Ricci curvature, unimodular Lie groups and discrete
finitely generated groups with doubling property or manifolds which are roughly iso-
metric to these (cf. definition (1.1)); no other class of manifolds are known to satisfy
(σ, σ, σ)-uniform Poincaré inequality.

The scheme of the proof of our main theorem and the structure of this paper. In [5],
foundational work of Coulhon and Saloff-Coste shows that under two conditions on
(Mn, g), it admits a uniform Poincaré inequality (0.6) if and only if a graph approx-
imation of (Mn, g) admits a discrete version of this inequality (see Definition 1.25).
The first of these conditions is a local Poincaré inequality (0.15) which, as we men-
tioned before, holds under the lower bound assumption of the Ricci curvature. The
second condition in [5] is a local doubling property. It follows from the lower bound
assumption on the Ricci curvature, that this property holds on (Mn, g) as well as on
any of its graph approximations. Thus, it is sufficient to prove a Poincaré inequality
for any graph approximation of (Mn, g).

Section 2 is devoted to a detailed exposition of the part of the work in [5] that we
need in this paper. In Section 1, we describe a discretization scheme which is inspired
by the seminal works of Kanai (cf. [12, 13]). Kanai’s scheme provides a bounded
valence graph approximation of (Mn, g). His scheme relies on the Ricci curvature
lower bound assumption and requires in addition positivity of the injectivity radius of
(Mn, g). However, Coulhon and Saloff-Coste [5] later made the important observation
that a local doubling volume assumption is a sufficient one. In this section, we will
also recall a theorem of Kanai and its improvement by Coulhon-Saloff-Coste relating
the growth rate of the manifold and the growth of any of its graph approximation:
the graph and the manifold are roughly quasi-isometric as metric measure spaces (see
Definition 1.1), and it follows that the α-polynomial growth property transfers from
the manifold to any of its graph approximation.

In Section 3, we prove a discrete version of Poincaré inequality (0.6), which is a
slight generalization of the one given in [6, 308–311], which holds for graph having
polynomial growth. In Section 4, we assemble the pieces together and provide the
proofs of our main theorem and of Corollary 0.12. It is in this part that the assumption
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of the polynomial growth of the manifold is first used. Finally, in Section 5, we present
examples elucidating the sharpness of our inequalities.

Notation. Henceforth, we will let M denote (Mn, g) and we let d denote the dist
function on M .

Acknowledgement. The research in this paper greatly benefited from visits of the
authors at Institut Fourier, IHP, Paris VI, Princeton University and the University
of Georgia. The authors express their gratitude for their hospitality. We would also
like to deeply thank Tobias Colding and Laurent Saloff-Coste for their advice and
insight regarding the subject of this paper. G. Besson is supported by ERC Advanced
Grant 320939, GETOM. S. Hersonsky is supported by grant 319163 from the Simons
Foundation.

1. Discretization of riemannian manifolds

In this section, we recall some basic definitions and lemmas that are needed before
we state the main application that is needed in this paper, Corollary 1.22. This
corollary relates the property of polynomial growth of a manifold to any of a tight
discrete approximation of it. Throughout this section, we will closely follow the
notation and logic as in [5] and in [12, 13].

Definition 1.1 ([12, 13]). Let (X, ρ, µ) and (Y, d, ν) be two metric measure spaces.
A map φ : X → Y is called a rough isometry if there exist constants c1 > 0 and
c2, c3 > 1 such that

(1.2) Y = ∪x∈XB(φ(x), c1),

(1.3) c−1
2 (ρ(x, y)− c1) ≤ d(φ(x), φ(y)) ≤ c2(ρ(x, y) + c1), and

(1.4) c−1
3 µ(B(x, c1)) ≤ ν(B(φ(x), c1)) ≤ c3µ(B(x, c1)).

If there exists a rough isometry between two metric measure spaces, they are said to
be roughly isometric.

Let M be a complete Riemannian manifold. A subset G of M is said to be ǫ-
separated, for ǫ > 0, if the Riemannian distance between any two distinct points of G
is greater than or equal to ǫ. An ǫ-discretization of M is an ǫ-separated subset G of
M which is maximal with respect to inclusion of sets. The maximality implies that

(1.5) M =
⋃

ξ∈G

B(ξ, ǫ),

and ǫ is then called the covering radius of the discretization. The graph structure on
G is determined by defining the neighbors of ξ ∈ G to be the set

(1.6) N(ξ) = {G ∩B(ξ, 2ǫ} \ {ξ}.
The multiplicity M(G, ǫ) of the covering M =

⋃

ξ∈G B(ξ, ǫ) is defined by

(1.7) M(G, R) = supξ∈G |N(ξ)|.
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In fact, this graph which we denote by X , carries a structure of a metric-measured
space (X, ρ, µ): The distance ρ on X is the canonical combinatorial distance, and the
measure µ is defined by

(1.8) µ(x) = vol(B(x, ǫ)), for each x ∈ X.

The following definition allows one to distinguish metric measure spaces with a special
property of the measure.

Definition 1.9. A metric measured space (X, ρ, µ) satisfies the local doubling condi-
tion, (DV )loc, if for all r > 0 there exists Cr such that for all x ∈ X

(1.10) µ(B(x, 2r)) ≤ Crµ(B(x, r)),

where the constant Cr depends on r but is independent of the point x.

The following lemma, which will be used in the proof of Theorem 2.1, asserts that
the assumption of local doubling implies uniform control on the multiplicity of the
covering {B(x, 3ǫ)}x∈X . It was first proved by Kanai [12, Lemma 2.3] under a Ricci
lower bound curvature assumption. However, it turns out that the main ingredient
in Kanai’s proof is the (DV )loc property (which is implied by the Ricci lower bound
curvature assumption).

Lemma 1.11 ([12, Lemma 2.3]). Let Mn be a complete Riemannian manifold which
satisfies the local doubling condition (DV )loc. Then, there exists M = M(ǫ), depend-
ing only on ǫ, such that, for every X ⊂Mn an ǫ-discretization of Mn, the multiplicity
of the covering {B(x, 3ǫ)}x∈X satisfies M(X, 3ǫ) ≤ M.

Proof. Note that since X is a ǫ-separated set then {B(x, ǫ
2 )}x∈X is a disjoint family

of balls. Fix some ball B(x, 3ǫ), x ∈ X and consider the subset Y ⊂ X consisting of
points y such that B(x, 3ǫ)∩B(y, 3ǫ) 6= ∅. Therefore, Y ⊂ B(x, 6ǫ) and {B(y, ǫ

2 )}y∈Y

is a disjoint family of balls contained in B(x, 6ǫ + ǫ
2 ). We have

(1.12)
∑

y∈Y

vol(B
(

y,
ǫ

2

)

) ≤ volB
(

x, 6ǫ+
ǫ

2

)

≤ volB (x, 7ǫ) .

For each y ∈ Y , we have B(x, 7ǫ) ⊂ B(y, 13ǫ) and by the local doubling assumption
(DV )loc we obtain (using in the last step that B

(

y, 13ǫ32

)

⊂ B
(

y, ǫ2
)

)

(1.13) volB (y, 13ǫ) ≤ C 13ǫ
2
volB

(

y,
13ǫ

2

)

≤ · · · ≤ C 13ǫ
2
C 13ǫ

4
. . . C 13ǫ

32
volB

(

y,
ǫ

2

)

.

This implies that

(1.14) volB
(

y,
ǫ

2

)

≥
(

C 13ǫ
2
C 13ǫ

4
. . . C 13ǫ

32

)−1

volB (x, 7ǫ) .

Hence,

(1.15)
∑

y∈Y

volB
(

y,
ǫ

2

)

≥ |Y |
(

C 13ǫ
2
C 13ǫ

4
. . . C 13ǫ

32

)−1

volB (x, 7ǫ) .

On the other hand, by (1.12) we have
∑

y∈Y volB
(

y, ǫ
2

)

≤ volB (x, 7ǫ), therefore, we
obtain

(1.16) |Y | ≤ C 13ǫ
2
C 13ǫ

4
. . . C 13ǫ

32
.
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This concludes the proof of the lemma with M(X, 3ǫ) = C 13ǫ
2
C 13ǫ

4
. . . C 13ǫ

32
.

�

Remark 1.17. An obvious consequence of Lemma 1.11 is that the covering {B(x, ǫ)}x∈X

is locally finite. In the proof of Theorem 2.1, we will need to work with the cover
induced by {B(x, 3ǫ)}x∈X , which is obviously locally finite as well.

Remark 1.18. Let Mn be a complete Riemannian manifold which satisfies the local
doubling condition (DV )loc and (X, ρ, µ) an ǫ-discretization of Mn. Then, (X, ρ, µ)
satisfies the local doubling condition (DV )loc.

As we recalled in the introduction, Kanai and Coulhon-Saloff-Coste described con-
ditions under which an ǫ-discretization of Mn is roughly isometric to (Mn, d, vol).
Kanai assumed a lower bound on the Ricci curvature and positivity of the injectivity
radius. Coulhon-Saloff-Coste refined Kanai’s result by only requiring that the volume
measure satisfies a local doubling condition.

The question of the invariance of polynomial growth under a rough isometry has
been also worked out by these authors under the same assumptions as above. Coul-
hon and Saloff-Coste proved that if the volume measure is local doubling, then α-
polynomial growth is invariant under rough isometries. Let us summarize these results
which will be used later in this section.

Theorem 1.19 ([5, Section 2], [13, Section 6]). Let Mn be a complete n-dimensional
Riemannian manifold and suppose that Mn satisfies the (DV )loc condition. Then, for
any ǫ-discretization X ofMn, the metric measured space (X, ρ, µ) is roughly isometric
to Mn. In particular, when Mn satisfies the lower Ricci curvature bound (0.1), then
the constants appearing in the definition of rough isometry (see Definition 1.1) depend
only on n, κ and ε.

Proof. This Theorem was first proved by Kanai under two assumptions, a lower bound
on the Ricci curvature and the positivity of the injectivity radius ([13, Lemma 3.6]).
Coulhon and Saloff-Coste later observed that the (DV )loc condition is sufficient. More
precisely, condition (1.2) holds by definition. The proof of condition (1.3) is derived
exactly as the proof of Lemma 2.5 in [13] since the latter relies only on the (DV )loc
condition (which is a consequence of the lower bound on the Ricci curvature). Con-
dition (1.4), which was established in [13] Lemma 3.6 under the assumption that the
injectivity radius is positive, is proved in [5], proposition 2.2, where only the condition
of local doubling of the volume measure is assumed.

�

The following theorem establishes an invariance property of polynomial growth
under rough isometries.

Theorem 1.20 ([5] Proposition 2.2). Let (X1, ρ1, µ1) and (X2, ρ2, µ2) be two metric
measure spaces satisfying the (DV )loc condition. Suppose that Φ is a rough isometry
between (X1, ρ1, µ1) and (X2, ρ2, µ2). Then, there exists a constant C > 0 depending
on the constant of the rough isometry and the constant in the local doubling condition,
such that

(1.21) C−1µ1(B(x,C−1R)) ≤ µ2(B(Φ(x), R)) ≤ Cµ1(B(x,CR))
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for any x ∈ X1 and R ≥ 1. In particular, polynomial growth of order α is invariant
under rough isometries.

We can therefore deduce the following corollary.

Corollary 1.22. Let Mn be a complete n-dimensional Riemannian manifold and
suppose that Mn satisfies the (DV )loc condition and let X be an ǫ-discretization of
Mn. Then Mn has polynomial growth of order α if and only if X has polynomial
growth of order α. In particular, when Mn satisfies the lower Ricci curvature bound
(0.1) and the α-polynomial growth estimate (0.2), then the ǫ-discretization X has α-
polynomial growth, µ(B(x,R)) ≤ v′Rα for every R ≥ R′

0, where the constants v′ and
R′

0 depend only on n, v, R0, κ and ǫ.

Proof. Let X be a ǫ-discretization of Mn. By Theorem 1.19, Mn and X are roughly
isometric. By Remark 1.18, X satisfies the (DV )loc condition and therefore the
assertion of the corollary follows upon applying Theorem 1.20. �

Henceforth, we will consider ǫ-discretization subsets of Mn such that the covering
radius is ǫ. We need two definitions before stating the main theorem of this section.

Definition 1.23. Let X be an ǫ-discretization of Mn. For a function f : X → R,
the length of the discrete gradient of f is defined by

(1.24) δf(x) =

(

∑

y∼x

|f(y)− f(x)|2
)1/2

.

Definition 1.25. Given σ ≥ 1 and β ≥ 1, we say that a discrete measured metric
space (X, ρ, µ) satisfies a uniform (σ, β, σ)-Poincaré inequality if there exist constants
r1, C = C(σ, β) and C′ ≥ 1 such that for any function f : X → R, any R ≥ r1 and
x0 ∈ X we have

(1.26)
∑

x∈B(x0,R)

|f(x) − fR|σµ(x) ≤ CRβ
∑

x∈B(x0,C′R)

(δf(x))σµ(x),

where

fR = fB(x0,R) =
1

µ(B(x0, R))

∑

x∈B(x0,R)

µ(x)f(x).

2. A criterion for a manifold to carry a uniform Poincaré inequality

In [5], Coulhon and Saloff-Coste studied a Poincaré inequality (0.6) with β = 1 and
σ = 1, that is, a (1, 1, 1)-uniform Poincaré inequality. Nevertheless, the proof for an
arbitrary β ≥ 1 and σ ≥ 1 works along the same lines of their arguments. Following
[5] and in order to make this paper self-contained, we will now provide the part of the
proof of Theorem 2.1 which is needed for our application: If X satisfies a Poincaré
inequality (1.26), then Mn satisfies a Poincaré inequality (0.6). In addition, we will
carefully keep track of the dependencies of the quantities appearing in the proof. The
statement of the theorem is the following.

Theorem 2.1 ([5], Proposition 6.10). Let Mn be a complete Riemannian manifold
which satisfies the local doubling condition, (DV )loc, and the local Poincaré inequality
(0.15). Let X ⊂ Mn be a ǫ-discretization of Mn. Then Mn satisfies the uniform
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Poincaré inequality (0.6) if and only if the discretization (X, ρ, µ) of Mn satisfies the
uniform Poincaré inequality (1.26).

Proof. Consider a complete Riemannian manifold Mn and an ǫ-discretization X of
Mn. We will prove the part of the Theorem which we will later need:

Given a function ψ :Mn → R let the function ψ̃ : X → R be defined by

(2.2) ψ̃(x) = ψB(x,ǫ) =
1

vol B(x, ǫ)

∫

B(x,ǫ)

ψ(z)dvol(z).

For E ⊂ Mn and F ⊂ X , two functions ψ : Mn → R, and f : X → R and σ a
positive integer, we define

(2.3) ‖ψ‖σ,E =

(
∫

E

|ψ(z)|σdvol(z)
)1/σ

and

(2.4) ‖f‖σ,F =

(

∑

F

|f(x)|σµ(x)
)1/σ

.

Let us recall the following lemma which relates the gradients of ψ and ψ̃.

Lemma 2.5 ([5], Lemma 6.4). For any σ ≥ 1, there exist constants T and T ′

depending on σ and the multiplicity of the covering associated to the ǫ-discretization
X of Mn, such that for all smooth functions ψ : Mn → R, all R ≥ 1, and all x ∈ X
the following holds

(2.6) ‖δψ̃‖σ,B(x,R) ≤ T ‖∇ψ‖σ,B(x,T ′R).

Inequality (2.6), the proof of which the authors referred to their Lemma 5.3 (which
is not proved), is stated in Coulhon Saloff-Coste. Let us provide a proof of this
Lemma.

Proof. The Lemma is a direct consequence of the following fact: for any ǫ > 0, any
x, y ∈Mn such that d(x, y) ≤ 2ǫ and any ψ : Mn → R,

(2.7) |ψ̃(x)− ψ̃(y)|σV (x, ǫ) ≤ C

∫

B(x,6ǫ)

|∇ψ|σ,

where C := C(n, σ, ǫ, κ) and V (x, ǫ) = volB(x, ǫ). Indeed, assuming (2.7) we have

‖δψ̃‖σσ,B(x,R) =
∑

z∈B(x,R)

|δψ̃(z)|σV (z, ǫ)(2.8)

≤
∑

z∈B(x,R)

M(ǫ)σ−1

(

∑

z′, d(z,z′)≤2ǫ

|ψ̃(z′)− ψ̃(z)|σ
)

V (z, ǫ)

≤ CM(ǫ)σ−1M(6ǫ)

∫

B(x,C′R)

|∇ψ|σ,

where M(ǫ) is the multiplicity of the covering of Mn by balls of radius ǫ and C′ =
1+6ǫ; in (2.8), the first inequality is due to Jensen’s inequality and the second follows
from (2.7).
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Let us conclude the proof of Lemma 2.5 by proving (2.7). Note that

(2.9) ψ̃(x) − ψ̃(y) =
1

V (x, ǫ)

1

V (y, ǫ)

∫

B(x,ǫ)

∫

B(y,ǫ)

(ψ(u)− ψ(z))dudz.

By Jensen’s inequality, we get

(2.10) |ψ̃(x)− ψ̃(y)|σ ≤ 1

V (x, ǫ)

1

V (y, ǫ)

∫

B(x,ǫ)

∫

B(y,ǫ)

|ψ(u)− ψ(z)|σdudz,

and by Minkowski’s inequality we get,
(2.11)

|ψ̃(x)−ψ̃(y)|σ ≤ 2σ−1 1

V (x, ǫ)

1

V (y, ǫ)

∫

B(x,ǫ)

∫

B(y,ǫ)

(

|ψ(u)−ψ̃(x)|σ+|ψ(z)−ψ̃(y)|σ
)

dudz,

which implies, by the local Poincaré inequality,

(2.12) |ψ̃(x)− ψ̃(y)|σ ≤ 2σ−1 C

V (x, ǫ)

∫

B(x,3ǫ)

|∇ψ|σ + 2σ−1 C

V (y, ǫ)

∫

B(y,3ǫ)

|∇ψ|σ,

where C =: C(n, σ, ǫ, κ). We then deduce,

(2.13) |ψ̃(x)− ψ̃(y)|σV (x, ǫ) ≤ 2σ−1C

(
∫

B(x,3ǫ)

|∇ψ|σ +
V (x, ǫ)

V (y, ǫ)

∫

B(y,3ǫ)

|∇ψ|σ
)

,

and by local doubling and the fact that d(x, y) ≤ 2ǫ,

(2.14) |ψ̃(x) − ψ̃(y)|σV (x, ǫ) ≤ C′

∫

B(x,6ǫ)

|∇ψ|σ.

�

We now turn to the proof of the part of the theorem which will be needed for the
applications of this paper.

Let (X, ρ, µ) be a fixed ǫ-discretization ofMn satisfying Poincaré inequality (1.26).
After a normalization, which will affect the constants once and for all, we can assume
that ǫ = 1.

We need to prove that for a given σ ≥ 1, there exists a constant C > 0 such that for
any r0 > 0, there exists a constant K such that for any smooth function ψ :Mn → R

and any R ≥ r0, Inequality (0.6) holds, that is

(2.15)

∫

B(m,R)

|ψ(x) − ψR|σdvol(x) ≤ KRβ

∫

B(m,CR)

|∇ψ(x)|σdvol(x).

To this end, let us consider a smooth function ψ on M , numbers r0 > 0 and σ ≥ 1,
and a point m ∈Mn. Let R satisfy R ≥ r0. Let us define

(2.16) R1 = max{ǫ, r1} = max{1, r1},
where r1 is determined by the discrete Poincaré inequality (1.26).

The radius R can be either less than or equal to R1, or larger than or equal to R1.
In the following, we will analyze these cases separately.

In the first case, r0 ≤ R ≤ R1, the conclusion essentially follows from the local
Poincaré inequality. Indeed, Inequality (0.15) yields that
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(2.17)

∫

B(m,R)

|ψ(x)− ψR|σdvol(x) ≤ C(n, σ,R)

∫

B(m,3R)

|∇ψ(x)|σdvol(x),

and thus allows us to conclude that

(2.18)

∫

B(m,R)

|ψ(x) − ψR|σdvol(x) ≤ K1R
β

∫

B(m,3R)

|∇ψ(x)|σdvol(x).

where

(2.19) K1 :=
1

rβ0
supr0≤R≤R1C(n, σ,R)

is a constant which depends on r0, r1, as well as the local Poincaré function C(n, σ,R)
of Mn.

We now consider the second case where R ≥ R1. Let η ∈ R be a constant to
be determined later. Let 1U denote that characteristic function of the set U . Since
B(m,R) ⊂ ⋃x∈X∩B(m,R+ǫ)B(x, ε), we have

∫

B(m,R)

|ψ(z)− η|σdvol(z) ≤
∫

B(m,R)

∑

x∈X∩B(m,R+ǫ)

|ψ(z)− η|σ1B(x,ǫ)(z)dvol(z)

(2.20)

≤
∑

x∈X∩B(m,R+ǫ)

∫

B(x,ǫ)

|ψ(z)− η|σdvol(z).

For any positive numbers u, t and σ an integer, Minkowski’s inequality asserts that

|u− t|σ ≤ 2σ−1(|u|σ + |t|σ).
It then follows that

∫

B(m,R)

|ψ(z)− η|σdvol(z) ≤ 2σ−1
∑

x∈X∩B(m,R+ǫ)

∫

B(x,ǫ)

|ψ(z)− ψ̃(x)|σdvol(z)
(2.21)

+2σ−1
∑

x∈X∩B(m,R+ǫ)

µ(x)|ψ̃(x)− η|σ.

Let us denote by (I) and (II), the first term and the second term composing the
right-hand side of the last inequality, respectively.

One can bound (I) from above by using the local Poincaré inequality (0.15) with
R = ǫ and

(2.22) C1 = 2σ−1C(n, σ, ǫ),

to obtain

(2.23) (I) ≤ C1

∑

x∈X∩B(m,R+ǫ)

∫

B(x,3ǫ)

|∇ψ|σdvol(z) .
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By lemma 1.11, the multiplicity of the covering {B(x, 3ǫ)}x∈X is bounded by M(ǫ).
Since ǫ ≤ R, we have that for each x ∈ B(m,R+ ǫ) B(x, 3ǫ) ⊂ B(m, 5R). Therefore,
we have

(2.24) (I) ≤ C1M(ǫ)

∫

B(m,5R)

|∇ψ|σdvol(z).

We prove that the second term (II) is bounded in the following way. Since (M,d, vol)
and (X, ρ, µ) are roughly isometric, we can choose x0 ∈ X such that d(m,x0) ≤ ε. By
choosing r = R+2ǫ+1 and C3 = 3ǫ+1

ǫ = 4, we have (since R ≥ R1 = max{ǫ, r1} ≥ ǫ
and ǫ = 1)

(2.25) R+ 2ǫ ≤ r ≤ C3R = 4R,

so that

(2.26) X
⋂

B(m,R + ǫ) ⊂ B(x0, r),

and for any constant C we have

(2.27) B(x0, Cr) ⊂ B(m, (CC3 + 1)R) = B(m, (4C + 1)R).

In order to apply the discrete Poincaré inequality in the context of (II), let us
choose

(2.28) η = ψ̃r =
1

µ(B(x0, r))

∑

x∈B(x0,r)

µ(x)ψ̃(x).

By assumption, (X, ρ, µ) satisfies a (σ, β, σ)-Poincaré inequality (see Definition 1.26)
and since 1 < R1 < R+ ǫ ≤ r, we obtain

(2.29) (II) ≤ 2σ−1Crβ
∑

x∈B(x0,C′r)

µ(x)|δψ̃(x)|σ .

Therefore, Inequality (2.6) of Lemma 2.5 and the fact that r ≤ C3R = 4R imply

(2.30) (II) ≤ 2σ−1(CT σ4β)Rβ

∫

B(x0,C′T ′r)

|∇ψ(z)|σdvol(z).

We now claim that

(2.31)

∫

B(m,R)

|ψ(z)− ψR|σdvol(z) ≤ 2σ inf
τ∈R

∫

B(m,R)

|ψ(z)− τ |σdvol(z),

where ψR = ψB(m,R).

Indeed, for any τ ∈ R ,by applying Jensen’s inequality we have
(2.32)

‖τ−ψR‖σ,B(m,R) =

(

∫

B(m,R)

(

1

volB(m,R)

∣

∣

∣

∫

B(m,R)

(ψ(y)− τ)dvol(y)
∣

∣

∣

)σ

dvol(z)

)

1
σ

≤ ‖ψ−τ‖σ,B(m,R).

Furthermore, Minkowski’s inequality implies that

(2.33) ‖ψ−ψR‖σ,B(m,R) ≤ ‖ψ− τ‖σ,B(m,R)+ ‖τ −ψR‖σ,B(m,R) ≤ 2‖ψ− τ‖σ,B(m,R),
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hence, the claim follows.

Now let us define

(2.34) C2 = C1M(ǫ),

(2.35) C4 = 2σ−1CT σCβ
3 = 2σ−1(CT σ4β)

and

(2.36) C5 = max {C2, C4}.

Inequalities (2.24), (2.30) and the claim imply that
(2.37)
∫

B(m,R)

|ψ(z)−ψR|σdvol(z) ≤ 2σ

(

C2

∫

B(m,5R)

|∇ψ(z)|σdvol(z) + C4R
β

∫

B(x0,C′T ′r)

|∇ψ(z)|σdvol(z)
)

,

hence, by applying (2.27) we obtain
(2.38)
∫

B(m,R)

|ψ(z)−ψR|σdvol(z) ≤ 2σC5

(

∫

B(m,5R)

|∇ψ(z)|σdvol(z) +Rβ

∫

B(m,(C′T ′C3+1)R)

|∇ψ(z)|σdvol(z)
)

.

This implies that for any ball of radius R ≥ ǫ we have

(2.39)

∫

B(m,R)

|ψ(z)− ψR|σdvol(z) ≤ K2R
β

∫

B(m,(C′T ′C3+5)R)

|∇ψ(z)|σdvol(z),

where

(2.40) K2 := 2σ
(

C5

ǫβ
+ C5

)

.

Inequalities (2.18) and (2.39) then give the required (σ, β, σ)- uniform Poincaré in-
equality

(2.41)

∫

B(m,R)

|ψ(x) − ψR|σdvol(x) ≤ KRβ

∫

B(m,C′′R)

|∇ψ(x)|σdvol(x),

where

(2.42) K = max{K1,K2}
and

(2.43) C′′ = C′T ′C3 + 5 = 4C′T ′ + 5.

This concludes the proof of Theorem 2.1.
�

Bishop-Gromov Comparison Inequality implies that for any complete Riemannian
manifold Mn with Ricci curvature bounded below RicciMn ≥ −(n− 1)k, we have

(2.44) volB(m, 2R)) ≤ 2n exp((n− 1)
√
k2R) volB(m,R)),

i.e., Mn is locally doubling. By Theorem 0.14, such a manifold also satisfies the local
Poincaré inequality. We may therefore state
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Proposition 2.45. Let Mn be a complete Riemannian manifold with Ricci curvature
bounded below, Ricci ≥ −(n − 1)κ, then Mn satisfies the local Poincaré inequality
(0.15) and the local doubling property with constants depending on n and κ.

By applying the assertion of Theorem 2.1 we obtain

Corollary 2.46. Let Mn be a complete Riemannian manifold with Ricci curvature
bounded below. Then Mn satisfies a uniform-(σ, β, σ) Poincaré inequality (0.6) if
and only if an ǫ-discretization (X, ρ, µ) of M satisfies the discrete uniform analogue
(1.26).

3. Poincaré inequality for metric measured graphs

In this section, we prove that metric measured graphs which satisfy a certain growth
condition, polynomial growth, support discrete versions of Poincaré inequalities as
(1.26). In the applications, such graphs serve as discrete approximations to a complete
Riemannian manifold. These graphs satisfy the conditions needed in order to apply
the work in [5] to the proof of Theorem 0.7.

Let (X, ρ, µ) be a metric measured graph; (X, ρ, µ) will be said to have α-polynomial
growth if inequality (0.2) holds with respect to the metric ρ and the measure µ. Let
V,E denote the set of vertices and (non-oriented) edges of X , respectively. We will
write x ∼ y when [x, y] ∈ E, where [x, y] denotes the directed edge from x to y.
Given a function u : V → R, we let du : E → R denote the gradient of u defined by
du([x, y]) = u(y)−u(x). Let us recall that we defined (see Definition 1.23)) the length
of the gradient of u at a vertex x ∈ V to be

(3.1) δu(x) =

(

∑

y∼x

|u(y)− u(x)|2
)1/2

.

Since X is a discrete space, we can integrate any function g on any subset F ⊂ V with
the restriction of µ to F . For the counting measure on X , we define the integration
as
∫

F g =
∑

x∈F g(x).

We now establish a (σ, α+σ−1, σ)-Poincaré inequality of type (1.26). As mentioned
in the introduction, the proof of the following Theorem is very similar to the one in
[6, p. 310]

Theorem 3.2. Let (X, ρ, µ) be a metric measured graph with α-polynomial growth,
namely, for some R0 > 0 and any R ≥ R0, we have µ(B(x,R)) ≤ v′Rα. We also
assume that µ(x) ≥ ω. Then for and σ ≥ 1, for any function u : X → R, R ≥ R0

and any ball B(p,R) ⊂ X, we have

(3.3)

∫

B(p,R)

|u(x)− uR|σdµ(x) ≤ 6σ−1v′ω−1Rα+σ−1

∫

B(p,3R)

|δu(x)|σdµ(x),

where uR = uB(p,R).

Proof. Let γx,y is a minimizing geodesic joining x to y. By the definition of the length
of the gradient of u, we have

(3.4) |u(x)− u(y)| ≤
∫

γx,y

|δu|.
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We also have
(3.5)
∫

B(p,R)

|u(x)− uR|σdµ(x) =
1

µ(B(p,R))σ

∫

B(p,R)

∣

∣

∣

∫

B(p,R)

(u(x)− u(y))dµ(y)
∣

∣

∣

σ

dµ(x).

Hence, by normalizing the measures involved to have total mass equal to one and
then applying Jensen’s inequality twice, we obtain
(3.6)
∫

B(p,R)

|u(x)− uR|σdµ(x) ≤
1

µ(B(p,R))

∫

B(p,R)

(

∫

B(p,R)

(

∫

γx,y

|δu|
)σ

dµ(y)
)

dµ(x).

By applying Jensen’s Inequality again to the innermost integral in equation (3.6)
we get

(3.7)
∫

B(p,R)

|u(x)−uR|σdµ(x) ≤
1

µ(B(p,R))

∫

B(p,R)

∫

B(p,R)

ℓσ−1
x,y

(

∫

γx,y

|δu|σ
)

dµ(y)dµ(x),

where ℓx,y is the length of the geodesic segment γx,y. Since γx,y ⊂ B(p, 3R) for any
x, y ∈ B(p,R), it follows that ℓx,y ≤ 6R. Hence,

(3.8)

∫

γx,y

|δu|σ ≤
∫

B(p,3R)

|δu|σ ≤ ω−1

∫

B(p,3R)

|δu(x)|σdµ(x),

the last inequality coming from our assumption µ(x) ≥ ω.
It follows that

(3.9)

∫

B(p,R)

|u(x)− uR|σdµ(x) ≤ (6R)σ−1 ω−1µ(B(p,R))

∫

B(p,3R)

|δu(x)|σdµ(x).

The polynomial growth assumption implies that

(3.10)

∫

B(p,R)

|u(x)− uR|σdµ(x) ≤ 6σ−1v′ω−1Rα+σ−1

∫

B(p,3R)

|δu(x)|σdµ(x).

This ends the proof of the theorem. �

Remark 3.11. Inequality 3.8 can be stated because X is discrete. Indeed, on a man-
ifold the geodesic γx,y and the ball B(p, 4R) would have different dimensions. This
inequality may seem crude, but we will show that it is in fact optimal. Indeed, in
Section 5, we exhibit an example of a graph X and a function u : X → R, such
that for every R and for a given x0 ∈ X , the support of δu in the ball B(x0, R) is a
diameter L and for most of couples (x, y) in B(x0, R), the geodesic γxy goes through
L so that

∫

γxy
|∇u|σ ≈

∫

B(x0,R)
|∇u|σ. Consequently, Inequality 3.8 is essentially an

equality.

4. Proofs of the main results

We start this section by proving Theorem 0.7. After recalling a few basic defi-
nitions from the general setting of Riemannian manifolds, we turn to the proof of
Corollary 0.12.
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4.1. A proof of Theorem 0.7. Henceforth, we let Mn be a complete Riemannian
manifold with Ricci curvature bounded below Ricci ≥ −(n − 1)κ, and polynomial
growth of order α volB(m,R) ≤ vrα for every R ≥ R0 (see (0.1) and (0.2), respec-
tively) for some positive constants v, α. By Proposition 2.45, Mn satisfies the local
doubling condition, (DV )loc, and a local Poincaré inequality. We now consider an
ǫ-discretization X of Mn with ǫ = 1.

Corollary 1.22 implies that X has polynomial growth of order α, i.e., there exists
R′

0 such that for any R ≥ R′
0, µ(B(x,R)) ≤ v′Rα; where v′ depends on n, v and κ, and

R′
0 depends on n, R0 and κ. By (0.3) and (1.8), we also have µ(x) = vol(B(x, 1)) ≥ ω

for every x ∈ X . Let p ∈ X be arbitrary. By Theorem 3.2, for every R ≥ r1 = R′
0, X

satisfies the Poincaré inequality (3.3):

(4.1)

∫

B(p,R)

|u(x)− uR|σdµ(x) ≤ 6σ−1v′ω−1Rα+σ−1

∫

B(p,3R)

|δu(x)|σdµ(x).

Hence, we are in position to apply Theorem 2.1 and obtain

(4.2)

∫

B(m,R)

|ψ(x) − ψR|σdvol(x) ≤ KRβ

∫

B(m,C′′R)

|∇ψ(x)|σdvol(x).

Let us explicitly summarize whatK in the above inequality depends on. Recall that

the constant K satisfies K = max{K1,K2}, K1 = (1/rβ0 )supr0≤R≤R1C(n, σ,R) and

K2 = 2σ
(

C5

ǫβ + C5

)

where C5 = max{C2, C4}, C2 = C1M(ǫ), C4 = 2σ−1CT σCβ
3 =

2σ−14βCT σ (cf. (2.42), (2.19), (2.40), (2.36), (2.34) and (2.35)) with C = 6σ−1v′ω−1

(cf. (3.3)). The constant C′′ in (4.2) has been defined by C′′ = C′T ′C3+5 = 4C′T ′+5
(cf. (2.43)) with C′ = 3.

We deduce that the constant K depends on n, σ, r0, R0, κ, and v and the constant
C′′ depends on n, κ. This ends the proof of Theorem 0.7.

4.2. Uniform and global Poincaré inequality for horospheres. We now turn
to the proof of Corollary 0.12. LetMn be a n-dimensional closed Riemannian manifold
with its negative sectional curvature uniformly satisfying

(4.3) −a2 ≤ K ≤ −b2 < 0.

Let M̃n be the universal cover ofMn, T 1M̃n its unit tangent bundle, and π : T 1M̃n →
M̃n the canonical projection. We denote by ∂M̃n the ideal boundary of M̃n. For v ∈
T 1M̃n, let γv(t) be the geodesic in M̃

n such that γv(0) = π(v) and γ̇(0) = v. Given a

point ξ = γv(−∞) ∈ ∂M̃n, and a base point x0 ∈ M̃n, for all ξ ∈ ∂M̃n and for all x ∈
M̃n, the Busemann function Bξ(·) is then defined by Bξ(x) = limt→−∞(d(x, γv(t))−
d(x0, γv(t))). it is known that since Mn is a closed negatively curved manifold, for

each ξ ∈ ∂M̃n, the Busemann function Bξ(·) is smooth. Furthermore, for any t ∈ R,

the level set Hξ(t) =
{

x ∈ M̃n; Bξ(x) = t
}

is a smooth submanifold of M̃n which is

diffeomorphic to R
n and is called a horosphere centred at ξ (the reader is referred to

[7] for the necessary background). For each v ∈ T 1M̃n, let W su(v) denote the strong

unstable leave of the geodesic flow on T 1M̃n. Recall that π(W su(v)) can be identified
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with the horosphere Hξ(0) centered at ξ = γv(−∞) and passing through π(v), that
is π(W su(v)) = Hξ(0).

For t ∈ R, let expt : W
su(v) → M̃n be the restriction of the exponential map to

Hξ(0), i.e., for any unit vector u ∈W su(v), expt(u) = γu(t).

A proof of Corollary 0.12. Let us consider a horosphere, H := Hξ, centered at

ξ ∈ ∂M̃n. We let ρ denote the distance on H determined by the induced Riemannian
metric on H . Let us prove that H , endowed with ρ and the corresponding induced
vol measure (which by abuse of notation we will denote by vol), has the following
polynomial growth: For every R ≥ 1,

(4.4) volB(p,R) ≤ DRα, with α =
(n− 1)a

b
,

where B(p,R) is a ball in H centered at p and having radius R, and D is a constant.

Our starting point is a distance comparison proposition due to E. Heintz and
H. ImHof; the proof is a consequence of Rauch’s comparison theorem, which can be
applied due to the assumption on the sectional curvature of M̃ .

Proposition 4.5 ([11], Proposition 4.1). Let u ∈ T 1M̃n be a unit tangent vector on

M̃n and let v, w ∈W su(u) be two unit vectors in the strong unstable leaf of u. Then
for all t ≥ 0, the distance between γv(t) and γw(t) satisfies

(4.6) ebtρ(γv(0), γw(0)) ≤ ρ(γv(t), γw(t)) ≤ eatρ(γv(0), γw(0)).

The two following properties are immediate consequences of this proposition:

(4.7) B(γu(t)), e
bt) ⊂ π

(

expt(π
−1B(γu(0), 1))

)

,

and

(4.8) volB(γu(t), e
bt) ≤ volπ

(

expt(π
−1B(γu(0), 1))

)

≤ e(n−1)atvolB(γu(0), 1),

where B(γu(0), 1) and B(γu(t)), e
bt) are balls on the horosphere Hξ(0) and Hξ(t),

respectively, with ξ = γu(−∞).

Therefore, if we let R = ebt , t ≥ 0 it follows that

(4.9) volB(γu(t), R) ≤ RαvolB(γu(0), 1).

Consider now the ball B(x,R) ⊂ Hξ(0) centered at x = πv the base point of the
unit tangent vector v. Let u = γ̇v(−t) be the unit tangent vector such that γu(t) = x
From (4.9) we have

(4.10) volB(x,R) ≤ R
(n−1)a

b volB(γu(0), 1).

The set {(H̃, p) | p ∈ H̃, H̃ ∈ M̃n} of pointed horospheres of M̃n is homeomorphic to

T 1M̃n and, therefore, since M is closed, is co-compact. It follows that there exists a
positive constant D such that

(4.11) D = sup{volB(p, 1)} <∞,

where the supremum is taken over all balls of radius 1 on all horospheres. We then
conclude that for every R ≥ 1,

(4.12) volB(x,R) ≤ DRα.
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Hence, horospheres in M̃n have uniform polynomial growth. Furthermore, since
Mn is closed, horospheres have uniform bounded sectional curvature (for the induced
Riemannian metric) and in particular will have a uniform lower bound on their Ricci
curvature. Therefore, any horosphere H satisfies Poincaré inequality (0.6) with α as
defined above.

5. Examples

It is natural to ask if the inequalities we derived in Theorem 0.7 can be improved.
In this section, we show that the assertions of this theorem is optimal in the sense
that, when α ≥ 1 and σ ≥ 1, one can construct a Riemannian manifold Mn of Ricci
curvature bounded below and polynomial growth of order α which does not carry a
(σ, β, σ) Poincaré inequality with β < α+σ− 1. In fact, Theorem 3.2 is also optimal:
we will construct a graph of polynomial growth of order α ≥ 1, which does not carry a
(σ, β, σ) Poincaré inequality with β < α+σ−1, for any σ ≥ 1. Following this, we will
construct a manifold Mn that is roughly isometric to the graph. In these examples,
we will assume for simplicity that α = 2, the general case can be done in the same
way.

To this end, let us first construct a planar embedded graph G with a quadratic
growth. Let R2 be endowed with the Euclidean metric. The graph G is the following
“antenna like” embedded in this R2 as

(5.1) G = {x = 0} ∪n∈Z {y = n}.
The vertex set V of G is defined by V = {(m,n) | m, n ∈ Z}. An edge of G is either
a vertical segment joining (0, n) and (0, n+1), n ∈ Z, or a horizontal segment joining
(n,m) and (n+ 1,m), n, m ∈ Z. In particular, that there is no vertical edge joining
(n,m) and (n,m+ 1) for n 6= 0.

The distance d on G is the intrinsic distance induced by the embedding of G in R
2,

(5.3) d((m,n), (m′, n′)) = |m|+ |m′|+ |n− n′|,
and the measure on G is the counting measure.

Given two functions f, g : [0,+∞[→ [0,+∞[, we will write f ≍ g if there exists
a constant c > 0 such that f(R) ≤ cg(R) and g(R) ≤ cf(R) for R large enough. It
is easy to check that the volume of an open ball of radius R in G centered on the
{x = 0} axis satisfies

(5.4) V (R) = 2
(

1 + 3 + . . .+ (2R+ 1)
)

− (2R+ 1) ≍ R2,

and that balls far away from this axis have linear growth.

We now construct a manifold model for G. Consider G ⊂ R
2 ⊂ R

3. For ǫ > 0
small enough, the set Sǫ of points in R

3 at distance ǫ from G is a smooth surface.
The surface Sǫ inherits a Riemannian metric induced by the metric of R3 so that Sǫ

is made of flat cylinders attached together at the vertices (0, n), n ∈ Z.

Note that the graph and the surface are embedded in R
3 and that the projection of

the surface on the graph is Lipschitz. Consider now the graph in R
2 (as a horizontal

plane in R
3). Then, the vertical projection up from the graph to the surface is also
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Figure 5.2. A ball of radius 4 in G.

Lipschitz. The first map is surjective and the second map has an image whose 2ǫ-
neighborhood covers the surface Sǫ, so the graph and the surface are roughly isometric.

Figure 5.5. Part of the surface Sǫ.

Let us now define a function u : V → R such that for any positive constant C > 0
and any β < α+ σ − 1, σ ≥ 1,
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(5.6) lim
R→∞

(

∫

B(R)

|u− uR|σ
)(

Rβ

∫

B(CR)

|∇(u)|σ
)−1

= ∞.

The function u is given by

(5.7) u(m,n) = n, for all m,n ∈ Z,

for any horizontal edge, u is defined to be its value on one of the endpoints. Finally,
on vertical edges, u is defined by extending its value at the endpoints linearly.

Lemma 5.8. For any positive number C,

(5.9)

∫

B(CR)

|∇(u)|σ ≍ R,

and

(5.10)

∫

B(R)

|u− uR|σ ≍ Rσ+2,

where the balls B(R) and B(CR) are centered at (0, 0). The relation (5.6) follows
immediately.

Proof. The first estimate follows by a simple counting argument. The second estimate

follows by comparing the sum with (since uR = 0)
∫ N

0
(2x+ 1)(N − x)σdx.

�

With Sǫ as defined as above, one argues as before that a relation analogous to (5.6)
holds. Thus, the assertion of Theorem 0.7 is optimal.
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