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JORGENSEN'S INEQUALITY FOR
DISCRETE GROUPS IN NORMED ALGEBRAS

SHMUEL FRIEDLAND anp SA’AR HERSONSKY

0. Introduction. Let o/ be a normed algebra with identity over C with the norm
|l Let T = & be a group of invertible elements in &/. We then regard I as a
topological group with the topology induced by the norm |- |. Assume that a, b € o/
are invertible. Denote by (g, b) the group generated by a and b. Suppose that {a, b)
is a discrete group. What can one say about a, b? The best known result in this area
is Jorgensen’s inequality [Jor]. Let o/ = M,(C) be the algebra on 2 x 2 complex
valued matrices and assume <a, b is a subgroup of the special linear group of
SL,(C) = M,(C). Then the sharp inequality of Jorgensen claims that if {a, b) do
not generate an elementary group then

\(trace(a))® — 4| + |trace([a, b]) — 2| = 1. ©.1)

Here, [a, b] = aba™'b~!. We call {a, b) an elementary group if and only if ¢a, b)
has a nilpotent subgroup of a finite index. Note that (0.1) is invariant with respect
to conjugacy in GL,(C). Jorgensen’s inequality translates immediately to Kleinian
groups—discrete groups of Mdbius transformations of the Riemann sphere.
Jorgensen’s inequality was recently generalized by Martin [Marl] to nonelement-
ary discrete groups of Mobius transformations of any dimension n > 2. A simple
version of Martin’s inequality can be stated in our terms as follows. Ifda,b)c
generate a discrete nonelementary group then

max(ja — 1], b= 1)) =2 — /3. 0.2)

To obtain the corresponding results for Mdbius transformations one recalls that
orientation preserving Mébius transformations are isomorphic to the group
SO*(1, n)(R) = M,,,(C). In that case, the norm |[-| is assumed to be the spectral
norm. In [Mar2] Martin’s inequalities are used to obtain new lower bounds for the
volume of all hyperbolic n-manifolds.

The object of this paper is twofold. We first study necessary conditions for
discreteness of the group <a, b) = . By doing that we believe that one can get
similar results for discrete groups acting on other homogenous spaces, for example
the Siegel upper half plane. We also show that there are other variants of Martin’s
inequality (0.2). Second, we claim that if a, b belong to some classical groups, for
example SO*(1, n)(R) or Sp(n, R) then the inequality (0.2) can be improved by
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594 FRIEDLAND AND HERSONSKY

replacing the constant 2 — f ~ 0.2679 by © ~ 0.2971. This is done in the general
setting by considering normed algebras with an involution.

We now survey briefly the contents of the paper. In §1 we consider the basic
iterations:

0,...,xg=b. (0.3)

]

Xm+1 = [a: xm]: m

We give conditions on a and b which imply lim,, ., x,, = 1. We call the group <a, b)
an a-nilpotent group if the iterations (0.3) stop at 1 after a finite number of steps,
ie., x,, = 1 for some m. We then state a generalization of Jorgensen’s inequality for
non-a-nilpotent groups. We show that our condition implies (0.2). In §2 we improve
our bounds to certain groups in normed algebra with an involution. In particular,
we replace the constant 2 — \/3 in (0.2) by the constant 7. In §3 we discuss our results
for the algebras of n x n complex valued matrices. In §4 we estimate from below
the radius of the largest ball in a hyperbolic n-manifold following Martin [Mar2]
and using our bounds. In the last section we give generalizations of Shimuzu-
Leutbecher and Jorgensen inequalities to certain discrete nonelementary subgroups
of the symplectic group as in [Herl1].

1. Tterations in normed algebras. Let o be a normed algebra with identity over
C with the norm |-|. That is, |-| is a submultiplicative norm on &« and |1| = 1. For
any linear bounded operator T: & — o we let | T|| = sup, <1 | T(x)]. The following
lemma is a basic tool in our arguments.

LEMMA 1.1. Let a € o be an invertible element. Associate with a the bounded
linear operator

a: oA - A, a(x) =axa™ — x. 1.2)
Then (1) = 0 and |4(x)| < ||dll |x — 1|. Furthermore
lall <2 min(ja — 1{]a”}, |a™" — 1]]al). (1.3)
Proof. Clearly, (1) = 0. Then,
la(x)] = la(x — DI < flafl |x — 1].
The following inequalities yield (1.3).
la(x)l = l(ax — xa)a™*| = |((a — )x — x(a — 1))a™*| < 2|x||a — 1{|a”"|,
la(x)| = la(xa™ — a7'x)| = la(x(@™ — 1) = (@' — D)x)| < 2|x|la”" — 1]]al.
Consider the following iterations:
X4y = [a, X, ], n=0,1,...,x,=b. (1.4)

We now study the case when lim,,_, , x, = 1.
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: general i , THEOREM 1.5. Let £ be a normed algebra and assume that a, b € of are invertible
i clements. Consider the iterations (1.4). Assume that ||d|| < 1. If one of the following
he basic R corditions holds

b—1l<1—{al,
p<a, b) |[a,b] — 1| < 1 — il
of steps, .
ality for thgn lim,, ., %, = 1
improve Proof. Let z € . Assume that |z| < 1. Recall that 1 + z is invertible and the
rticular, following conditions hold
rresults e
n below b 1% n 1 -1y ¢ 1.7
Mar2] B +97 =32 l0+27<p (1.7
himuzu-
bgroups E Set z, = x, — 1. We now claim that
ity over . | < J2UIZl (1.8)
= 1. For ' 1=zl
llowing . .
Note that (1.4) is equivalent to
bounded Xppqy — 1 = ax,atx;t — 1 = a(x,)x, " 1.4y
(1.2) [ Lemma 1.1 yields:
1Xper — 11 < 01X, ~ 117 (1.9
(1.3) Assume first that the first condition of (1.6) holds. That is |zo| < 1 — [|4]|. Assume
by induction that |z,| < 1 — [|a]. Use (1.9) and (1.7) to obtain (1.8). To this end
consider the map '
llalx
£0A-0r],  f@=1—r, r=1-lal.
, Note that 0, r are two fixed points of f. Furthermore, f(x) < x on (0, r). It then
follows that any sequence
lal.
{r.}5, Tur1 = f(r) n=1,...,.0<r, <r (1.10)
(1.4) decreases to the attracting point 0. The induction hypothesis |z,| <7 implies that

either z,,, = 0 or 0 < |z,4,] < f(Iz,]) < |2,] <7. As the sequence {r,}T given in
(1.10) converges to O we deduce that lim, ., z, = 0. This proves the theorem in the
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case that the first condition of (1.6) holds. Assume that the second condition of (1.6)
holds. We consider the iterations (1.4) starting from x, = [a, b]. As the second
condition of (1.6) yields that |z,| < r we deduce the theorem in a similar way. O

The following theorem can be considered as a generalization of Jorgensen's
inequality.

THEOREM 1.11. Let &/ be a normed algebra. Assume that (a, b) is a discrete
non-a-nilpotent group. Then the following conditions hold

lall + 1[a, b] — 1} = 1,

lag +ip—1]=1.

In particular,
max(|[a, b] — 1},la — 1)) > 2 — /3, max(lb— 1, la—1))>2~ /3. (113

Proof. Assume to the contrary that at least one of the conditions of (1.12) docs
not hold. According to Theorem 1.5 the iterations (1.4) converge to 1. As {a, b is
discrete it follows that x, = 1 for some n. That is, {a, b) is a-nilpotent, contrary to
our assumptions.

Let y = max(|[a, b] — 1|, |a — 1]). Assume to the contrary that y <k =2 — \/3.
As [a — 1} < k¥ < 1 from (1.3) and (1.7) we obtain:

lall <2 =1 —x<1—|[ab]-1l.

1—x

This contradicts the first inequality of (1.12). The above contradiction proves
the first inequality of (1.12). The second inequality is established in a similar
manner. O

Let
Barn={xxed, |x—al<r}, Bo(a,ry={x:xe s, |x —a| <r}.
THEOREM 1.14. Let A be a normed algebra. Assume that T" is a discrete group.
Then for any 0 <r <2 — \ﬁ the group generated by the elements I 1 By(1, r) is
nilpotent. That is, there exists a k-so that for any sequence:
a; € By(1,7), i=0,...,y;=[a, yi-11, i=1,....,y0=a,, (1.1
Ve = L. In particular, if {a, b) is a discrete group and
la—11<2-/3, |b—11<2-./3 (1.16)

then <{a, b) is a nilpotent group.
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ion of (1.6) ,f :', Proof. AsT isadiscrete group, there exists a positive e so that I n By(1, )= {1}.
he second . Letx=2—./3,c= I < 1. We claim that
way. O K
orgensen’s ly,— 1] <c*e,  i=0,1,.... (1.17)
a discrete i We prove the above inequality by induction. As yo = ao € Bo(1, 1), (1.17) holds
B trivially for i = 0. Assume that (1.17) holds for i = n. Then use (1.7) and the induction
hypothesis to deduce
(12 Yuet = 1 = 1@,yaa7 y7" = 1 = 1(@yn — ¥a0a)a2" 32|
= l((a, — D(yu — 1) — (a — Dl@, — Da; "y
,—3-. (113) < -1 -1 2|an—1”yn_1|
< 2la, — Uy, — e [y <
Yo = M) < T I =Ty, — 1D
1.12) does |
s <a, b) is 1 - 2ckc™ K - "2kt e
>ntrary to =) —cx) (1—x? '
=2- \ﬁ ! The above inequality proves (1.17). Let k be the smallest positive integer so that
c**1k < ¢ Then (1.17) yields that y, € By(1, €). Hence, y, = 1 and the group gener-
ated by the elements I N By(1, r) is nilpotent, e.g. [Hup, IIL1.11].
Suppose that (1.16) holds. Then there exists r < x so that a, b € Bo(1, r). Consider
the sequence (1.15) with each g; equal to eitheraorbfori=0,1,...,. Asy,=1we
deduce that {a, b) is nilpotent. 0O
!mn proves
a similar » Theorem 1.14 s essentially due to Martin [Mar1]. That is, we showed that By(x, r)
§  is a Zassenhaus neighborhood for any r < k. Note that in this generality, the closed
ball B(1, r) is a compact set if and only if 7 is a finite dimensional normed algebra.
21} 2. Normed algebras with an involution. Let &/ be a normed algebra with identity
over C with the norm |-|. A real involution ': o/ — o satisfies the conditions:
te group. 5
Bo(1, 1) is ] E (xa + Bb)t = aa® + b, (ab)t = b'at, 1t=1,
T @2.1)
la'| =lal, abed, «fpeC.
., (1.1%
A complex involution ': &/ — « satisfies the conditions:
g (aa + pb)t = Ga’ + Bb!,  (ab)t =bla’, 1'=1,
(1.16) , 02

latl=1al, abed, o, feC.

iR
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We say that .o is a normed algebra with an involution if either (2.1) or (2.2) holds. P rooj
Letj € o be an invertible element. We then denote by O( j) < & thefollowing group We jus
inequal
O0(j)={a:a'ja=j,ae }. (2.3)
We call O(j) the j orthogonal group. Recall that j is called an isometry if
Let fb
ljal =lajl =lal, Vaed.
Clearly, j is an isometry if and only if j ! is an isometry. We shall show later on that
the classical spinor group and the (p, q) orthogonal groups are j orthogonal and j
is an isometry, for corresponding matrices j. The aim of this section is to improve & Asintl
the results of §1 in the case a, b € O(j) and j is an isometry. Our main tool is the g that lir
following obvious lemma: ¢ thearg
LEMMA 2.4. Let &/ be a normed algebra. Assume that a is an invertible element. Assum
Suppose furthermore that a™! = j~'aj and j is an isometry. Then
-1 _ = _ -1 — —_
la l|=la—1], lat|=la] <1+ |a—1]. 2.9 Hence
Let o/ be a normed algebra with an involution. Assume that a € O(j) and j is an
isometry. Then the conditions (2.5) hold.
THEOREM 2.6. Let o/ be a normed algebra with an involution. Assume that j is an
invertible element and an isometry. Suppose that a, b € O(j). Consider the iterations This -
(1.4). Assume that ||&|| < 1. If one of the following conditions holds the fi
i mann
|b_1|<_"_la Tw
llal .
(27) anint
O<r
I[a,b] -l <——1 is nil,
llall )
partic
then lim,_,, x, = 1. Thus, if {a, b)Y = O(}j) is a discrete non—a-nilpotent group, then
|b—1| = : 1 Ifa,b] — 1} = ! 1 (2.8)
- = Tan a, - = Tan L. .
lal lal then
In particular, Pr
Let ¢
max(|[a, b] — 1|,]Ja— 1) = 1, max(|b—1],la—1])=1
Here 7 is the unique positive solution of the cubic equation
We
2t(l + 72 =1, ©>02971. (2.10) trivi
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; Proof. Our proof is a corresponding modification of the proofs of Theorem 1.5.
f We just point out the modifications one should make in these proofs. Use
. inequalities (1.9) and (2.5) to deduce

|Zpea| < ld1H2, (1 + |2,]). (1.8

Let f be the function
1
£I0M =00, S0 =lalx(l+x),  r=q—1

As in the proof of Theorem 1.5 we obtain that either of the conditions of (2.7) implies
that lim,_, x, = 1. Assume that {a, b) is a discrete non—a-nilpotent group. Then
the arguments of the proof of Theorem 1.5 yield (2.8). Let y = max(|b — 1|, |a — 1{).
Assume to the contrary that y < 7. As ja — 1| < 7 from (1.3) and (2.5) we obtain:

lall < 2t(1 + 7).
Hence

1 1
LI R PR S T
T ) ©> b -1l

This contradicts the first inequality of (2.8). The above contradiction proves
the first inequality of (2.9). The second inequality is established in a similar
manner. 0O

THEOREM 2.11. Let o/ be a normed algebra with an involution. Assume that j is
an invertible element and an isometry. Let T = O(}j) be a discrete group. Then for any
0 < r < 1, where 1 is given by (2.10), the group generated by the elements I 1 By(1, 1)
is nilpotent. That is, there exists a k so that for any sequence (1.15) y, = 1. In
particular, if {a, b) is a discrete group and

la—-1| <1, b—1l <t (2.12)

then {a, b} is a nilpotent group.

Proof. AsT isadiscrete group, there exists a positive e so that I n By(1, &) = {1}.
Let ¢ = r/t. We claim that

ly,— 1] <c*le,  i=0,1,.... (2.13)

We prove the above inequality by induction. As y, = ao € By(1, r), (2.13) holds
trivially for i = 0. Assume that (2.13) holds for i = n. Then use Lemma 2.4 and the
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induction hypothesis to deduce Use the

Vs = 1 = l@uyna;" y2' = 1 = 1(@,y, — Yaan)ay' v, | Vs
= (@ = Dw = 1) = (32 = D(a, — D)a;'y;"| 3. M
compler
< 2la, — 111y, = 1la;*1y;"] counted
of A. A
< 2la, — 11y, = 1(1 + la, — 1)1 + |y, — 1) D = dia
of linea:
< 2cte™ (1 + er)(1 + ") < " 2203 (1 + 1)% = "2, Alx) =
The above inequality proves (2.13). The rest of the proof is concluded as the proof
of Theorem 1.14. O
We conclude this section with a variation of Theorem 2.11 which can be used to .
improve Martin’s lower bound for the radius r, of the largest ball contained in any Itis we
n-hyperbolic manifold [Mar2].
Set
E(l,r)={x:xeA,lxI(x—lISr}, §o(1,r)={x:xeﬂ,|x|lx—1|<r}. be the
. with re
Assume that x € O(j). From (2.5) we deduce norm i
x =1 = Ix7 = 1] = Ix7( = )| < Ix711 = x| = |x]]x — 1]. is also
B,n < B(,r),  Bo(1,r) < By(1, r). (2.14) See, fo
. ) norm |
Denote by w the positive solution of is the
2 isomet
20Q2w* + 1) =1, w ~ 0.3855. (2.15) where
. . . where
THEOREM 2.16. Let & be a normed algebra with an involution. Assume that j is is inve
an invertible element and an isometry. Let ' = O( ) bg a discrete group. Then for any a C*
0 <r < w, the group generated by the elements T n By(1, r) is nilpotent. ACCOT(
Proof. Our proofis a slight modification of the proof of Theorem 2.11 and we involt
point out the specific changes that should be made in the above proof. Let ¢ = r/w. Let

We claim that

lyitly: — 1 < Mo, i=0,1,...

From the proof of Theorem 2.11 it follows that

Vasr = 1 < 2{a, = Yy, — Ula M ya'| = 21, = Ula,ly, — Ulyal < 2¢"20”.
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: used to
din any

(2.19)

(2.15)

that j is
Jor any

and we
r=r/w.
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Use the last inequality of (2.5) and the above inequality to get

Vet [Vner = U UYer — H + Diypes — 1] < Qo* + 1)2¢"20? = "o,

3. Matrix algebras. In this section we assume that &/ = M,(C)-algebra of n x n
complex valued matrices. Denote by A(A4) = {4,,..., 4,} the n eigenvalues of 4
counted with their multiplicity and let p(4) = max, (; <,|4;| be the spectral radius
of A. A is called diagonable if there exists X € GL,(C) so that A = XDX ™! where
D = diag(4,, ..., A,) is a diagonal matrix. In that case the columns of X form a set
of linearly independent eigenvectors of A. One views M,(C) = Hom(C", C") where
A(x) = Ax, x € C", A € M,(C). Let ||, be the I, norm on C"

n 1/p
l(xls'-"xn)rlp=<;|xi‘p> » 1 <p< 0.

It is well known that the conjugate norm of ||, is |-, pl+q =1 Let

IX|, = max |Xx|,, XeM,C)

fxlp <1

. be the corresponding operator norm on M,(C). Thus, M,(C) is a normed algebra
- with respect to any |-|,, 1 < p < co. Clearly, the topology induced by any of this
norm is the standard topology on M,(C) = C". It is easy to see that | X |, = | X|,. It
is also known that

| X*, =1X",=1Xl,, p+q'=1L (3.1

See, for example, [Fri] for this and other basic results needed here. The spectral
norm | X|, isequal to \ﬂo(AA*) = \/ p(A*A). The group of isometries of the /, norm
is the group of the unitary matrices U, < GL,(C). Hence U, is also the group of
isometries of the spectral norm. The natural real involution on M,(C) is A~ AT
where A7 is the transposed matrix of 4. The natural complex involution is A— A*
where A* is the conjugate transpose of A. The corresponding norm of M,,(C) which
is invariant under the above involutions is the spectral norm. Moreover, M,(C) is
a C* algebra under the spectral norm and the involution 4+ A*. (Note that
according to (3.1) the norms |-|,, p # 2 are not invariant under any of the above
involutions.)
Let J € GL,(C). We then let

O() = {A, ATJA = J, A€ GL,(C)},
(3.2)
U(J) = {4, A*JA = J, Ae GL,(C)}.

We call O(J) and U(J) the J orthogonal and J unitary groups respectively. The
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classical (m, n — m) orthogonal group—SO(m, n — m) group corresponds to a diag-
onal J withm “1”’s and n — m*“— 1”’s on the diagonal. The classical spinor group
Sp(n) corresponds to the matrix 2 x 2 block matrix J:

J= (Jl'j f, Jiit=J,=0, Jiz = ~J1 =1e€GL,(C).

In the both cases J is a unitary matrix. Thus, we can apply Theorem 2.11 to the
discrete nonelementary subgroups <a, b) contained either in SO(1, n) or Sp(2n).
Assume first that a, b € SO(1, n). As the constant t appearing in (2.12) is definitely
bigger than 2 — \/5 one can improve the recent lower bounds of Martin [Mar2]
for the volume of all hyperbolic n-manifolds. We hope that in the case a, b € Sp(2n)
Theorem 2.11 will give lower bound for the volume of manifolds whose universal
covering spaces are Siegel upper half planes.
Consider again the iterations (0.3) on GL,(C). For a fixed 4 € GL,(C) let

®: GL,(C) - GL,(C), D(X)=AXA" X!, (3.3
According to the standard notation of dynamical systems let

®°=1d, ! =0, @) = @°m(D), m=1,...,.
Thus, the m-th element X, of the sequence (0.3) is given by ®°™(X,). Note that
GL,(C)is an algebraic group and map (3.3} is a holomorphic rational map. Further-
more, the identity matrix I is a fixed point of ®. It is now clear that Theorem 1.5
gives sufficient conditions for I to be an isolated attracting point. Furthermore, the
inequalities (1.6) estimate the basin of the attraction of I. The following theorem
gives the exact condition when I is an attractor:

THEOREM 3.4. Let A € GL,(C) and consider the map (3.3). Then the Jacobian map
J(@)(I): M (C) - M, (C)at the fixed point I is equal to A. In particular, I is an isolated
hyperbolic attracting point if and only if

max
A A e AL4)

A
= — . 3.5
% ll <1 (3.5)

Proof. As the Lie algebra of GL,(C) is M,(C), it follows that around I we have
the equalities:

X=1+Z, X '=1-Z+,0X)=Al+2)A (I -Z+)
=14 (AZA' = 2)+ = J@®))=A.

We claim that the n? eigenvalues of A are /A= 1i4,j=1,...,n Assume first
that A4 is diagonable, ie, 4 = TDT . Conjugating by T we may assume that

JORGE!

A =D = diag

That is, D is
M,(C). Thus,
claim in the ¢
above result {
all the eigenv
hyperbolic at

Itis of inter
domain of the
generalizatios
question rath
ously, O(J) is
this case the ¢

THEOREM :
necessarily su

If A is diagon
holds in the ir
operator norr,
is less than €.

Proof. F1
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bounds the s
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A straightfor
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A =D = diag(,, ..., ,). Let Z = (z;;) € M,(C). Then
D(2) = (hzgh* — zy)y = (A4 — Dz);.

That is, D is a diagonal matrix acting on the n?> dimensional space vector space
M,(C). Thus, the n? eigenvalues of D are (A4i/4) = 1,i,j = 1, ..., n. This proves our
claim in the case A is a diagonable matrix. The continuity argument implies the
above result for any A. Hence, if I is an isolated attracting point we must have that
all the eigenvalues of A4 do not exceed 1 in absolute value. By the definition of a
hyperbolic attractive point we must have the strict inequalities (3.5). O

It is of interest to study the dynamics of the map ® in general and in particular, the
domain of the attraction of I under the conditions (3.5). Perhaps it could lead to a
generalization of Jorgensen’s inequality involving the spectrum of the matrices in
question rather than their norms. Consider next the subgroup 0(J) € GL,(C). Obvi-
ously, O(J) is an algebraic group. Furthermore, if A € O(J) then ®: O(J) - O(J). In
this case the ®(X) = AXJ'ATXTJ is a “quadratic” map. -

THEOREM 3.6. Let A € GL,(C). Assume that || is a vector norm on M,(C) (not
necessarily submultiplicative). Then

max
1<i,j<sn

i 1‘ <Al EX)

j

If Ais diagonable, then there exists an operator norm on M,(C) such that the equality
holds in the inequality (3.7). If A is not diagonable then for any ¢ > 0 there exists an
operator norm on M,(C) such that the right-hand side of (3.7) minus its left-hand side
is less than e.

Proof. From the proof of Theorem 3.4 it follows that the eigenvalues of the
operator A are (4/4) — 1,i,j = 1,..., n. Recall that any operatornormof T: V — V
bounds the spectral radius of T. This observation yields the inequality (3.7).

Assume that A is diagonable. W.1.o.g. (Without loss of generality) we may assume
that A = diag(A,, ..., 4,). Thus, A is a diagonal matrix acting on the matrix
Z = (z;)}. Recall that the [, and I, norms of Z are given by the formula:

Gl = max Y Iz, lzhile = max 3 |z, (3.8)

1gjgni=1 1 <ign j=1

A straightforward computation shows that for the above norms we have the equality
in the equality (3.7). In the case A is not diagonable one proves the ¢ results using
the continuity argument. 0O

Comparing Theorems 3.4 and 3.6 we see that for some choices of operator norm
on M,(C) Theorem 1.5 is sharp.
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Problem 39. Do we have equality in (3.7) for a diagonal matrix A = that P=1,1
diag(4,, ..., A,) if we choose the matrix operator norm to be the |-|,? X has k eige
. . . t
We now consider the problem when the iterations (0.3) stop after one or two 0Xu2 a(;(s;)m Pl

iterations. We will assume first that < is an algebra over C. Let x ~ y <>y = zxz™ !, '
i.e, x and y are conjugate. LemMMA 3.
Definition 3.10. An invertible element a € & is called regular if the following Proof. U
condition holds distinct eige:
; eigenvalues
X ~a, a[a,x]]=1=[a,x]=1. (x — )% Th
such that U
Equivalently, for any regular a if x ~ a and xax™' commutes with a then x formV =il
commutes with a. Note that is upper tria
X are equal

-1 _ -1 -1 — -l “1,~1_-1, _ .—1_-1_ -1
axax™ = xax‘a<>x"'axa=ax lax<>a 'x'a'x=x"ta'xa™ . Note that
Mobius trai
. . s

Thus, a is regular if and only if a™! is regular. polynomial

regular. It i
conclude th:

LeMMA 3.11. Let &/ be an algebra and assume that a, b € & are two invertible
elements. Consider the iterations (1.4). Assume that x, = 1 for some n. If a is regular
then either [a, b] = 1, i.e., the iterations stop after one iteration at 1, or [a, b] # 1,

; : . , . Conjectur
La, [a, b]] = 1, i.e, the iterations stop at 1 after two iterations. /

that the foll:
Proof. Clearly, if [a, b] = 1 then the iterations stop at 1 after one iteration. tions (0.3). 1
Assume that [a, b] # 1. Suppose that x, ., # 1, x, = 1. We claim that n = 2. Assumc
to the contrary that n > 2. As 1 = [q, x,_, ] we deduce that x,_; commutes with
a. Hence, a™!x,_, = (x,_,a )a ' (x,_,a”!)"! commutes with a~!. Furthermore,
X,-pa ! = (ax,-3)a (ax,_3)"!. Thatis, y = x,_,a"! is similar to a™* and ya™'y™"
commutes with a™!. Since a is regular we deduce that a™' is regular. Hence, y
commutes with a™*. Therefore, x,_, commutes with a. That s, x,_, = [a, x,_,] = |

which contradicts our assumptions. O

4. Ballsii
largest rout
there is an ¢
forr,. Inwh
our results
notation of

Let H" be
THEOREM 3.12. Let A € GL,(C). Assume that A has pairwise distinct eigenvalues. of H”. Firs
Suppose furthermore that the eigenvalues of A do not have a set of k eigenvalues which Ri -
- iemanniai
are all k-th roots of unity times some complex number ¢ € C*, for some k > 1. Then
A is regular.
Proof. As A has pairwise distinct eigenvalues, A4 is similar to a diagonal matrix
D with pairwise distinct diagonal entries. W.l.o.g. we may assume that 4 = D. Let
%(D) < M,(C) be the center of D. Next observe if X € ¢(D) then X is a diagonal Forx,yel

matrix. Suppose that XDX ™' = D, where D, is a diagonal matrix. As D and D, are
similar it follows that the set of diagonal entries of D and D, are the same. Since D,
is diagonal it follows that every column of X! is an eigenvector of D. As D is
diagonal with pairwise distinct entries, every eigenvector of D is a multiple of a basis
vector (84, ..., 0,)7. It then follows that X! is a monomial matrix. That is, ‘ Let #,be
X = D, P where D, is a diagonal matrix and P is a permutation matrix. We claim . hyperboloi
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h a then x

xa

10 invertible
a is regular

‘[a, b] # 1,

1€ iteration.
= 2. Assume
imutes with
arthermore,
ind ya~ly™!
r. Hence, y
. xn—2] =1

eigenvalues.
»alues which
k > 1. Then

onal matrix
A=D. Let
a diagonal
Yand D, are
ne. Since D,
D.AsDis
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£. We claim

4. Balls in hyperbolic manifolds.

4
2 _
R

dist(0,x) = In

1+ x|
1—|x|’
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that P = I, i.e,, X is diagonal. Indeed, for each cycle of P of length k we have that
X has k eigenvalues which are all k-th roots of unity times c. As X is similar to 4
our assumptions on the spectrum of A4 yield that k = 1. Thus, X is diagonal, ie.,

LEMMA 3.13. Let A € GL,(C), trace(A) # 0. Then A is regular.

Proof. 1f A = Al then $(4) = M,(C), hence A is regular. If 4 has two pairwise
distinct eigenvalues then A is regular by Theorem 3.12 unless the sum of the two
eigenvalues is zero, i.e., trace(A) = 0. Assume that the minimal polynomial of 4 is
(x — A)%. That s, A is similar to an upper triangular matrix U with 4 on the diagonal
such that U — AI # 0. Then any matrix in V € $(U) which is similar to U is of the
form V = Al + a(U — Al), a # 0. The assumption that XUX ™! = V implies that V
is upper triangular. If X is similar to U it follows that the two diagonal entries of
X are equal to A. Hence, X € ¢(U). That is, U is regular. O

Note that the matrices satisfying the conditions of Lemma 3.13 correspond to
Moébius transformations which are not rotations. We remark that if the minimal
polynomial of 4 € GL5(C) is (x — 1)* then according to our computation 4 is not
regular. It is of interest to characterize regular matrices in GL,(C) for n > 2. We
conclude this section with the following conjecture.

Conjecture 3.14. Let n be a positive integer. Then there exists an integer a(n) so
that the following condition holds. Assume that A, B € GL,(C) and consider the itera-
tions (0.3). Then either X,y = lor X, # ,m=0,1,....

In this section we estimate from below r,—the
largest round ball in a hyperbolic n-manifold following [Mar2]. Unfortunately,
there is an error in Corollary 3.3 of [Mar2] which invalidates Martin’s inequality
for r,. In what follows we modify some of the lemmas of §3 in [Mar2] incorporating
our results in the previous sections to obtain a lower bound on r,. We adopt the
notation of [Mar2] unless stated otherwise.

Let H” be the hyperbolic n-space. We are going to use here two standard models
of H". First, identify H" with the open Euclidean unit ball B" = R" with the
Riemannian metric

2.

For x, y € B" let dist(x, y) be the hyperbolic distance between x and y. Recall that

€ B".

Let .#, be the group of hyperbolic isometries of B". The second model of H" is the
hyperboloid model K < R™*!. See for example [Bea]. Then f € .4, is represented
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by A € O(1, n). Recall that any n-hyperbolic manifold is B*/T where I' < .#, is a
discrete torsion free subgroup.

LemMMA 4.1. Let A€ O(n). Then for each Q > 4 there is B € O(n) such that for
some 1 < q < Q"2 B> =] and

T
A - Bl <—.
q0

Proof. Recall that O(n)is SO(1) @ SO(n) where SO(m) is the group of m x mreal
orthogonal matrices with the determinant equal to one. Thus, w.l.o.g. we may
assume that 4, B € SO(n). Recall that the eigenvalues of A4 are either equal to + 1
or come in pairs eV 1™, ¢"V"1" 0 < @< 1. Let 6y, ..., 6, €(0, 1), m < |n/2] be
the &’s corresponding to the nonreal eigenvalues of A. As A € SO(n) it follows
that A must have 2k eigenvalues equal to — 1. That is, there exists an orthogonal

decomposition
m+k m+k EN
e (9)o(3)
1 1

where each U, is an invariant subspace of 4 of dimension 2 such that:

(i) the restriction of 4 to U, is a rotation by g;nf,, ¢, = +1,i=1,...,m;

(ii) the restriction of A to U;isarotationbynfori=m+1,...,m+k;

(iii) the restriction of A to (P7** U;)* is the identity.

Use the Dirichlet theorem to deduce the existence of 1 < ¢ < Q™ and p,, ...,
Pm € Z so that

. 1
‘Oi—&ig— i=1,...,m.
q

Let B e SO(n) be obtained from A as follows. Assume that U, ..., U,4; and
(@7r** U,)* are invariant subspaces of B. Furthermore, the restriction of B to U, is
a rotation by &mnp;/q, i = 1, ..., m. On the invariant subspaces of U1, ..., Upsxs
(@7 U;)* the action of B coincides with the action of A. Hence, B2 = I and
|4 — Bl <n/qQ. O

Remark. The above lemma is the correct version of Corollary 3.3 of [Mar2].
Indeed, Corollary 3.3 claims that B? = I. This is obviously false if A € O(n) has

2k > 2eigenvalues equal to — 1 and n — 2k > 1 eigenvalues equal to 1. (In that casc
B=4A4)

LemMMA 4.2.  Suppose that f is a hyperbolic isometry and that

L+ 1@ _
=i

JORGEN®

Let A€ O0(1,n)

Proof. It i
B e O(n) we ge
A*—B'=(A

the triangle in
deduce the len

THEOREM 4..
there exists 0 ¢

Proof. By
2.4 in [Mar2]
anyl #Ceua

We claim tha
not hold for
r=||A|. Asi
more, there €.
with @ = 17.
that

|0 — Bl

Use Lemma ¢

Use the trian;
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Let A € O(1, n) be the matrix corresponding to f and B € O(n). Then for eachg =1
ri—1
|47 — BY| < r—_—1||A — BJ.

Proof. It is known, e.g., Proof of Lemma 3.1 in [Mar2], that A} =r. As
B e O(n) we get | BY|| = 1. Use the identity

A—B'=(A— B)A" + B(4—B)A* > + - + B"}(A— B)A + B"'(4 - B),

the triangle inequality, the inequality ||A’] < | A|* and the above inequalities to
deduce the lemma. 0

TueoreM 4.3. Let I = 4, be a discrete torsion free nonelementary group. Then
there exists o € B" so that for any feT

; 0.005
dist(o, f(0)) = 9, 0= 170 - 4.4

Proof. Byabuse of notation we view I' = O(1, n). Use the arguments of Theorem
2.4 in [Mar2] and Theorem 2.16 to deduce the existence of a € O(1, n) so that for
any I # C e al'a™ we have the inequality

ICIIIC — I = w > 0.3854. 4.5)

We claim that (4.4) holds with o = a™(0). Assume to the contrary that (4.4) does
not hold for some f eT. Then f is represented by AeO0(1,n). Set A= adat,
r = || A|l. As in the proof of Lemma 3.1 in [Mar2] we deduce that r < e°. Further-
more, there exists O € O(1, n) so that |4 — O|| < r(r — 1). Apply Lemma 4.1 to 0
with @ = 17. We then deduce the existence of an elliptic B € O(1, n) of order 2q so
that

1

q0’

2n

Q b

j0 - Bl < j0% — B2| = j0* ~ 1] < 1<q< Q.

Use Lemma 4.2 to deduce
4% — 0% < (™ — 1.
Use the triangle inequality and the fact that O € O(n) and the existence of Bto deduce

2
[AM <1402 = Dr, 4% =1 <G5+ %= Dr.
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Thus

1A% 4% =[] < (1 + (2 — 1)) (%" - 1)r>

< (1 + (2@ _ 1)@’)(%‘ + (e2Qui2s _ l)e">.

Use the assumption that Q = 17, the value of § and the inequality n > 2 to obtain

2n

“AZq" "AZq _ I" < (17 + (e0.0l _ 1)e0.005/17)(1 + (80'01 _ 1)80'005/17) < 0.384.

The above inequality contradicts (4.5). The proof of the theorem is completed. O

THEOREM 4.6. Let M = B"/T be a hyperbolic n-manifold. Then any fundamental
domain corresponding to M contains a hyperbolic ball of radius

0.0025
r= 1721 "
5. The symplectic group. In this section we extend Shimuzu-Leutbecher and
Jorgensen inequalities to certain discrete nonelementary subgroups <4, B) of the
symplectic group

Sp(n, R) = 0(J) N GL,,(R) = U(J) N GL,,(R),
G.1)
J= (Jij)f, J11 = Jzz =0, J12 = —-721 =1.

We follow closely some ideas and arguments of the second named author in [Herl1].
In [Her1] one expresses Mébius transformations in R" as 2 x 2 matrices whose
entries are Clifford numbers, i.e., Vahlen matrices. Here we use the natural partition
of symplectic matrices as 2 x 2 block matrices which satisfy special identities stated
below.

The following lemma follows straightforward from the definition of U(J).

LEMMA 52. Let A =(A)? e U(J), A;€ M,(C),i,j= 1,2 Then
Anl = ((A_l)ij %’ (A—l)ll = A;Z ’ (A—l)zz = ATI ’
(A-l)u = "Afz’ (A_1)21 = —A}‘,,
(5.3)
A11A§2 - A12A§1 = A22A’1¥1 - A21AT2 = AT1A22 - A§1A12

= A3A,, — At 45, =1,

For C
canb
Theo

TH
and I

Pr.

Ing



obtain

).384.

]

mental

ar and
of the

(5.1

Jerl].
whose
rtition
stated

(5.3)
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(AuATz)* = AnA?z’ (A21A§2)* = A21A;2’
(5.3)
(AflAzl)* = AT1A21 s (Angxz)* = A§2A12 -

A € U(J) s called a translation

A=(A2 A11=A12=A22=1, A21=0.

ijl1s

For C € M,(C) let |C| = p(C*C)'? be the spectral norm of C. The following lemma
can be considered as a generalization of Shimizu-Leutbecher inequality. See [Herl,
Theorem A].

THEOREM 5.4. Let A = (Ay):, B = (By)} € U(J). Assume that A is a translation
and B,; # 0. If (A, B) is a discrete group then |B,,| = 1.

Proof. Let
W(X)= XAX™', XeGLp(O), X,=Xnz)?=¥"B), m=0,1,.... (55)
Set:
X 11 = Cm>Xm12 = Dpms Xm.21 = Cm> Xm.22 = s Qs Dy, € iy € M,(C). (5.6)

Use (5.3) to deduce

Qi1 = amd; - (am + bm)c:l =1- amcr’::

bm+1 = _ambr: + (am + bm)a:l = ama:‘n

(5.7)
Cm+1 = cmd: - (cm + dm)cr: = —CMC:',

dpiy = —Cub¥ + (¢ + dp)a¥ =1+ cah.

In particular,

Cms1 = —(Coc8)*",

=|col*™, m=0,... (58

[Cma1| = |(C063)|2m

Assume to the contrary that |cy| < 1. Then lim,_.,c, =0. We claim that
lim,,,, X,, = A.First note that from the first identity of (5.7) we get the inequality

|msr} S 1+ layllcnl = 1 + lanl el

Use the induction and the assumption |cq| < 1 to deduce that

m
[@pmr1] < laollcol™ + Z;) lcol'
=
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In particular the sequence {|a,,|}§ is bounded by some positive constant K. Hence

|pss — 1] < lapl el < Kleol*™ = lim a,, =1.

m-=w

The other equalities of (5.7) yield that lim,, . , X,, = A. Finally, the assumption that
¢o = B;; # 0 implies thatc,, #0,m=1,...,. Thatis X,, # A,m=0, 1, ... which
contradicts the assumption that (4, B) generates a discrete group. 0O

A € Sp(n, R) is called superhyperbolic if
A=QGxIL,®t'1,)Q7, Q € Sp(n, R), 0<t<]. (5.9

In order to give a generalization of Jorgensen’s inequality we need to view GL,,(C)
(more precisely PGL,,(C)) as a group of Mobius transformations acting on the
Grassmanian manifold %,,,. Recall that ,, , is the projective variety of all n
dimensional subspaces of C?". As usual let M, (C) ~ Hom(C* C?) be the vector
space of all p x g complex valued matrices. Then a point P € 4,, , is represented
by a matrix P € M,, , of rank n, i.e. rank(P) = n. That is, the corresponding n
dimensional subspace of C2" is the subspace spanned by the n columns of P. Thus,
P’ € M,, , represent the same point in ¢,, , if and only if P’ = PT, T € GL,(C). We
adopt the following block notation for P

P=[P1’P2]¢>P=(Pij::,=j%—-'lj=l’ P, =P, P, = P, e M,(C).
Then GL,,(C) acts naturally on ¥,, , by multiplication.
A% Yonms P AP, Pe%,,,, A e GL,,(C).

It now follows that 4 and x4, « € C* represent the same transformation on %,, ,.
We now show that the above action corresponds to the standard representation of
Mobius maps. Let

4, . ={P: P =[X,I], X € M,(C)}.

Here I is the n x n identity matrix. Thus, 4,, , > %3, , ~ M,(C) is one of the
affine charts of 4,, . Assume that A = (4;;)? € GL,,(C). Then A[X, I] = [4,, X +
Az, 431X + A,,) Thus,if A,; X + A,, is nonsingular we get [ X, I1—[(4,, X +
A543, X + A,,)7, 1. This is exactly the Mbius transformation on the first
coordinate of P = [X, I].

We now discuss briefly the fixed points of A € GL,,(C) using the standard tools
of multilinear algebra. Consult for example with [Mar]. First note that ¢,,, , is the
n-th wedge product /\7 C?". Then the action of 4 on A} C?" is given by C,(4) =
A A A A+ A Athe n-th compound of A. Recall that C,(4) is N x N matrix with
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2
N= < nn), where each entry of C,(A4) is a corresponding n x n minor of A. Thus,

any fixed point P€%,,, of A corresponds to an eigenvector of C,(4) which
represents an n-dimensional invariant subspace of 4. Recall

AC(A) = {I A=D1 <iy < <ip<2n),  AA)={dy,..., A}

Thus, P is an isolated fixed point of A if and only if P is an eigenvector of C,(4)
corresponding to a simple eigenvalue. Let A be of the form (5.9). It now follows that
C,(A) has exactly two simple eigenvalues t”, 7" That is, the corresponding M{bius
transformation 4: 4,, , = %,, , has exactly two fixed isolated points. Forn > 1, 4
has other fixed points which form irreducible varieties of positive complex dimen-
sion.

Let A, B € GL,,(C) and denote by {4, B) the group of M&bius transformations
generated by A and B. We call {4, B) an elementary group if {4, B) has an
invariant orbit consisting of a finite number of points. See for example [Bea].

£ The following theorem is a generalization of Jorgensen’s inequality. See [Herl,
i Theorem B].

THEOREM 5.10. Let A, B e Sp(n, R). Assume that A is superhyperbolic with an
eigenvalue 0 < t < 1. If (A, B) is a discrete nonelementary group then

2
(‘c — —) + max
T veA(BAB A~

v+1—2l>1. (5.11)
v

1
v+;—2 <1. (5.11y

1 2
(r — —) + max
T ve A(BAB-14-1)
W.lo.g. we assume that
A= (Aij)%’ Ay =1, Az = 7, Ay, =A4,,=0,
B,., = B,AB;! = (B,,,H,l-j)f, B,=B, m=1,..., (5.12)

Bm,11=am9 Bm,l2=bm’ Bm.21=cm’ Bm,22=dm’ m=0’ 1""

Recall that the matrices B,, m =0, 1, ..., are real. Thus, B} ; = BT ;- From the
identities (5.3) and we obtain the recursive relations:

_ * -1 — -1
Ay = 1a,dY — 71 b,k bpviy = bpat(t™ — 1),

(5.13)

— %* -1 — 1
Cm+1 = Cmdm(T -1 )’ dm+1 =1 dma:l - TCmb;: .
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From the above identities one deduces that the matrices b,,, ¢,,, m = 1, ..., are real
symmetric matrices. Combine the above equalities with (5.3) to obtain

bus1Chiy = —(1 + bucX)buch(z — 171)%. (5.14)
Let

f:[0,1-[0,7], f(x)=x(1+x)(x— T, r=(@—-1t")"2-1>0. (515

(Note that (5.11) implies the inequality (7 — 1™1)? < 1, ie. r > 0) The two fixed
points of f are 0, r. Furthermore, f(x) is an increasing function and f(x) < x on
(0, 7). We claim (5.11) yields that p(byc) < r. Assume for a moment that this is
correct. It is well known that one can introduce an operator norm on M,(C) so that
|byck| < p(boc) + ¢ for any positive &. (See, for example, [H-J, 5.6.10].) Choose a
positive ¢ so that |byc%| < r. The submultiplicativity of an operator norm and (5.14)
yield

|Bpss sl < f(Ibuchl) < oo < S (|boc)).-

Hence, lim,, ., , b,,c* = 0. Use (5.3) to obtain a,df, = I + bnch. Thus, lim,, ., 4,4} =
1. As (a,d*)* = d,a¥ we also deduce that lim,, d,a* = I. The equalities (5.13)
and the limits that we showed to exist yield that

lim a, =, lim d,=1"1. (5.16)

m— o m-—a
The inequality (5.11) yields |t — t7*| < 1. Use (5.16) and (5.13) to obtain
lbm+lt_(m+l)|2 S Clme_m‘z B lcm+l’[m+1|2 S C|Cmfm|2 > m> M7
for some 0 < ¢ < 1. Hence

lim b,r™™ = lim ¢, =0.

m—w m-wx

It then follows that lim,,_., A™™B,,A™ = A. As {4, B) is discrete we deduce that
B,,, = A for some m. We claim that (4, B) is elementary. Indeed, as B,,,_,4 =
AB,,,_, it then follows that the set {P, Q} consisting of the two isolated fixed points
of A remains invariant under the action of B,,,,. Continue this argument induc-
tively to deduce that {P, Q} is invariant under the actionof B,i=2m—1,...,0.
Hence, A and B have an invariant finite orbit {P, Q} which contradicts that (4, B>
is nonelementary. To end the proof of the theorem we need to show that (5.11y
yields the inequality p(boc¥) < r. More precisely, assume that

2
(‘C — —> + max
T ve A(BAB 14™1)

v+1—4<1_& 0<e. (5.11y"
v
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We will then show that
(1 + pbocENz — 1712 <1 —¢. (5.17)
Consider the matrix B,. As B, is similar to A it follows that

(B, — (B, —t'I)=0. (5.18)
In particular:

a?—(t+1Va, +1=—bc, = —byct,
(5.19)
dlz - (T + t_l)dl + I = —Clbl = —-(blcf)*.

Assume first all the eigenvalues of b, ¢, which are equal to the cigenvalues of ¢, b,
are pairwise distinct and are different from zero. It then follows that if x is a
nontrivial eigenvalue of b, ¢, that is b;c;x = yx, x # O then a,x = ax. Note that
¢,b,(c,x) = y(c, X). As b, ¢, is a nonsingular matrix we obtain that ¢, x # 0. Deduce
from (5.19) that d,(c, x) = 6(c, x). Let

= (xT, O)T’ Y2 = (0, (clx)T)T'

It now follows that span{y,, y, } is aninvariant subspace of B, and B, is represented
by 2 x 2 matrix with the entries a, 1; y, 6. Note that

a+d=1+1t, ad—y=1. (5.20)

Observe next that span{y,, y, } is also an invariant space of B, A~! with representa-

tion matrix at~%, t1; yt, dt. Thus, if v € Spec(BAB™ A7) it follows that

v+ v =07l + b1, (5.21)

Use the equality (5.14) for m = 0, the fact that ¢} = ¢, and the assumption that
the eigenvalues of b,c, = b,c* are pairwise distinct to deduce that x is also an
eigenvector of bycy: bocdx = ypx. We claim that a = 7 + (t — 771)y,. Indeed, the
first equality of (5.13) for m = 0 reads:

a, = taod% — 171 bock = thock + 1l — T bock = ayx = (t + (1 — T )yo)x.

The equality a + 6 = 7 + 7 yields that § = t™* — (t — 77*)y,. Hence
Vvl —2=atl 4+ 8t = —ylt — 171

We thus showed

max v+ v — 2] = p(bocE)(r — 7).
ve A(BAB~14™})
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Hence, (5.11)" implies (5.17). In particular, p(byc) < r where r is defined in (5.15).
It is left to show that (5.11)" yields (5.17) for any b, c§. Clearly, we can approximate
the matrix B by B so that (5.11)" holds for A and B. Let the corresponding blocks
of B be ag, by, & Cos do We can assume that b,&* have pairwise distinct eigenvalues
such that (1 + b,&%)b,c¥ have also pairwise distinct eigenvalues different from zero.
As A, B satisfy the inequality (5.11)” our arguments show that (5.17) holds for by .
Now the continuity argument shows the inequality (5.11)" implies (5.17) for any b,
co. The proof of the theorem is completed. O
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