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Hausdorff dimension of diophantine geodesics in
negatively curved manifolds

By Sa’ar Hersonsky at Beer-Sheva and Frédéric Paulin at Orsay

Abstract. We provide a sharp estimate for the visual dimension of the set of geode-
sic rays, starting from any fixed point p in a closed pinched negatively curved Riemannian
manifold, that are coming back exponentially close to p infinitely often.

1. Introduction

Let M be a smooth complete Riemannian manifold of dimension n = 2 with pinchgd
negative curvature —a’ < K < —1, with 1 < a < co. Let & be the volume entropy of M,
that is
logvol B;(p, R)

h = limsu ,
RHJroop R

where M — M is a universal cover of M and p any point in M. Fix two points p,q in M,
and endow the unit tangent sphere at p with Gromov’s visual metric (the definition is
recalled in section 2) and with the Hausdorff measures defined by this metric.

In this paper, we provide sharp estimates on the Hausdorff dimension of the set of
geodesic rays y starting from p that accumulate on ¢ exponentially fast. More precisely:

Definition 1.1. Let o € [0,+00], a geodesic y starting from p is a-Liouville at g if
there exist a constant K > 0 and a sequence (1), converging to +oo such that, for every
nin N,

d(gq,7(tn)) < Ke .

If & = 0, then the Liouville geodesic rays are exactly the recurrent geodesic rays.

Theorem 1.2. [If M is compact, then the Hausdorff dimension D, of the set of -
Liouville geodesic rays starting from a given point in M satisfies

<D, = h .
14+o = _1_~_E
a
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Note that the bounds depend neither on p nor on ¢. If the curvature is constant and
equals —1, then the visual metric on the unit tangent sphere coincides with the spherical
metric, and the Hausdorff dimension of the set of a-Liouville geodesic rays starting from a

. . . -1
given point in M is exactly TT
o

No smoothness assumption is necessary, this result also holds when M is a metric
space with curvature bounded above by —1 and below by —a? in the sense of Alexandrov
(see for example [GH]). For the assertion regarding the upper bound, the compactness
assumption of M can be removed, by replacing /# with the critical exponent ¢ of the cover-
ing group M — M (see Theorem 4.1).

When o =0, and without the compactness assumption, this result is due (besides
partial cases by S. Dani, C. Aravinda, J. Fernandez-M. Melian, C. Aravinda-E. Leuzinger
and B. Stratmann) to Bishop-Jones [BJ] for rank one symmetric spaces of non compact
type, and to [Pau] for hyperbolic metric spaces in the sense of Gromov, again up to re-
placing i by 6. When o > 0, this result is a contribution to the Hill-Velany’s [HV1] program
of “shrinking targets”, in the case (that they did not develop) of the geodesic flow of neg-
atively curved Riemannian manifolds. Also note that the paper [HV2] gives, in constant
curvature, an analogous result when the point ¢ is “‘at infinity”” (and a parabolic fixed
point). We plan to extend it to our variable curvature setting, see [HP2].

Definition 1.3. A geodesic ray y starting from p is a-Diophantine if there exists a
constant K > 0 such that for all 7 in [1, +00],

d(q,7(t)) = Ke ™.

We say that y is of Roth type if it is a-Diophantine for every o > 0. We prove that
almost every (for the Hausdorff measure of the visual sphere) geodesic ray starting from p
badly approximates ¢, in the sense of the next result, which immediately follows from
Theorem 1.2, since the Hausdorff dimension of T’ le is h.

Corollary 1.4. Almost every geodesic ray starting from a given point in M is of Roth
type.

These results for the geodesic flow of a negatively curved manifold are analogous to
results in metric diophantine approximation theory (see for example [Khi]). We make this
analogy explicit in section 2 after recalling the basic definitions that are needed for the
proofs. See also [HP], [KM], [BD] for other connections. The (easier) upper bound is
proved in section 4 and the lower bound in section 5. We also consider (see Theorem 2.1)
the case when the function ¢ — e~ * in the definition of a-Liouville geodesic rays is replaced
by ¢+ g(¢) with g(¢) — 0 as ¢ goes to +oo. To obtain our bounds, we give new estimates
on the size of the shadows of tiny balls on the boundary of M, that were known for in-
stance by Patterson-Sullivan when the radius of the ball is fixed (see section 3).

Acknowledgement. The work on this paper started in 1996, when the second author
was a member of the mathematics department UMR 128 CNRS at the ENS Lyon, and the
first one was visiting there, and was completed during a stay of the first author at the IHES
in 1999. We warmly thank both institutions.
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2. Background and notation

We recall some notations, definitions and results of [Bou], [GH] about negatively
curved metric space, that have essentially been introduced by M. Gromov.

Let X be a proper CAT(—1) space (for example a simply connected complete
Riemannian manifold M with curvature K < —1), and let T be a discrete group of iso-
metries of X (for example the covering group Iy of a universal cover M — M with M as in
the introduction). Let x, y be points in X, with x considered as the base point.

The boundary 0X of X is the space of all geodesic rays in X, where two rays are
identified if they remain within bounded Hausdorff distance. We call I" non elementary if no
finite index subgroup has a global fixed point in X U 0X. The Poincaré series of T is

P(s) = 3 e ),

yel

This series converges (independently of x, y) if s > J and diverges if s < ¢ with

0 = limsup — ! log Card(Fy N By (x, R))
R—+w0

We will always assume that o is positive and finite. This is for example the case when I is
non elementary and X also has curvature bounded from below by —a? in the Alexandrov’s
sense. Note that if I' = I'y; with M as in the introduction and if M is compact, then ¢ is the
volumic entropy /4 defined in the introduction.

Let a,b € 0X. Their Gromov product with respect to the base point x in X is defined
by

(@), = Tim +(d(x,a()) +d(x, b)) - d(at), b(1)))

independently of the geodesic rays a,b: [0, +00[ — X representing a, b. The visual distance
dy on 0X is then defined by

0 if a = b,

_(a*, b)\'

e otherwise.

d,(a,b) = {
We will denote by #(&,r) = %,(&,r) the open ball of center ¢ and radius r > 0 in 0X
endowed with the visual distance d,. An isometry y of X extends to a homeomorphism of
dX which is an isometry between dy and d,,. If M is as in the introduction, and p is a point
in M, then the unit tangent sphere T~ M at any lift p of p in a universal cover M — M is
homeomorphic to the sphere at 1nﬁn1ty by the map which associates to a unit tangent vec-
tor v at p the point at infinity of the unique geodesic ¢ starting from p with ¢/(0) = v.
By equivariance of the visual distances with respect to the isometries, the pull back of
the visual distance d; from 0M to TﬁlM projects to the visual distance on Tle used in the
introduction for the statement of Theorem 1.2.



32 Hersonsky and Paulin, Diophantine geodesics

For s > 0, one defines the s-dimensional Hausdorff measures u, on 0X associated to
the visual metric d,, as follows. For > 0 and 4 a subset of 0X, let y ,(A4) = inf  r},
i

where the infimum is taken over all countable covers of 4 by balls of radius r; < #. Define
.us(A) = 117111(1) :us.,n(A)'

The limit exists, and there is a unique o € [0, 4+ 0] such that p(A4) = 4+ if 0 <5 < ¢ and
u(A) = 0if ¢ < s, which is called the Hausdorff dimension of A (see [Fal], Section 1.2).

If (E,d) is a metric space, and B is a ball of radius r > 0, for every 1 > 0, we will
denote by AB the ball of radius Ar and same center.

The shadow 0A = O.A of a subset A of X seen from x is the set of points & in 0.X
such that the (unique) geodesic ray from x to ¢ has a non-empty intersection with A. The
cone €A = €A based at x over a subset 4 of 0X is the union of the images of the geodesic
rays starting from x with endpoints in 4. The shadow cone €0A of a subset A of X seen
from x is the cone based at x over the shadow seen from x of A4.

If o > 0, one can take K = 1 in the definition of the a-Liouville geodesic rays. Any
geodesic ray passing through ¢ infinitely many times (a periodic one, for example) is o-
Liouville, but there are at most countably many of them (since 7; M is countable).

Let 7: X — X /T be the canonical projection. Given g: [0, +00[ — |0, + o[ with ¢(7)
converging to 0 as ¢ goes to +o0, say that a geodesic ray ¢ starting from x is g-Liouville if
there exists a sequence (#,),, . converging to +co such that, for every n in N,

dyr(n(y),mop(ty)) < g(tn).

Theorem 1.2 in the introduction follows from the following theorem, with p = 7(x),
qg=mn(y) and g(z) = e ™.

Theorem 2.1. Let X be a smooth complete simply connected Riemannian manifold of
dimension n = 2, with pinched negative curvature —oo < —a*> < K < —1, witha = 1, and let
I' be a non elementary discrete group of isometries of X.

-1 t
(1) If o = liminf %g()’ then the Hausdorff dimension of the set of g-Liouville

t— 00

geodesic rays is at most T
14—
a

. -1 t : , .
(2) If p = limsup #g() and if T is cocompact, then the Hausdorff dimension of the

t— 0
set of g-Liouville geodesic rays is at least

)
1+
An analog of this statement in the constant curvature case was obtained in [Vel]. The

above theorem follows from Theorem 4.1 and Theorem 5.1 (below) by the following crucial
lemma (where B denotes a closed ball):
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Lemma 2.2. A4 geodesic ray ¢ starting from x is g-Liouville if its point at infinity ¢(o0)
= 1
belongs to infinitely many shadows OB <yy, Eg(a’(x, yy))), and only if ¢(o0) belongs to
infinitely many shadows @E(yy, 2g(d(x, yy))), where y runs over T,

Proof.  Assume first that ¢(co) belongs to infinitely many shadows

@1_3(?% %g(d(x, yy))) :

Then the geodesic ray ¢ meets the balls, centered at orbit points y,y and having radius
1 o
Fp = zg(d(x, 27)), such that z, = d(x,y,y) — 4. Let p, be the orthogonal projection of

: : . 1 .
7,» on the image of ¢, so that in particular d(y,y, p,) < ig(t,,). Then since g(¢) — 0 as
t — 400, one has (for n big enough):

d(m(y),mop(ta)) = d (7,3, 0(tn)) < d(7,3, Pu) +d(Py, 9(tn))
< d(,y,p,) + (d(p(tn),x) —d(x,p,)) = d (3,9, p,) + (d(7,9, x) — d(x, p,))
< 2d(p,y, Pa) = 9(t)-
The other direction follows by a similar argument. []

We now explain the analogy with classical results in metric diophantine approxima-
tion theory (see [Khi]). Recall that an irrational real number z satisfies a Liouville condition

of order o = 0 if there exists a constant K > 0 and infinitely many reduced rational numbers
Pn ith |z — Pn
dn
condition of order 0. A real number z satisfies a diophantine condition of order oo = 0 if there

K . . . L
S 55 In particular every irrational real number satisfies a Liouville
9

exists a constant K >0 such that for every reduced rational number B, one has
q

P> — A real number z is of Roth type if it satisfies a diophantine condition of

q| = 42

order « for every o > 0. It is well known (see [Khi]) that almost every (in the sense of the
Lebesgue measure) real number is of Roth type, and our Corollary 1.4 is analogous to this
result. Similarly, the upperbound in Theorem 1.2 is related to Dodson’s result in [Dod]. But
the connection with the classical metric diophantine theory can be made even sharper, as
follows.

Let T? be the quotient of R? by its standard integer lattice Z2, endowed with its flat
metric, and 7: R?> — T2 be the standard projection. Let O denote the projection of the zero
of R? in T2. For every real number z, let y. be one of the two geodesic rays in T2 starting
from O, which is the projection of the half line L. of R? starting from zero with slope z. The
following fact explains the relationship between the definitions in the introduction and the
classical notions of diophantine approximation theory.

Proposition 2.3.  The real number z satisfies a Liouville condition of order o = 0 if and
only if there exist a constant K > 0 and a sequence (t,), . converging to +oo such that, for
every nin N,

dp2(0,7.(t,)) < K, 1+,

n
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Proof.  The point of coordinates (g, gz) on the half-line L. is at distance |¢z — p| < 1
from (one of) the closest integer(s) point (¢, p), and at distance ¢v/'1 + z? from the origin.
Hence the distance from y_(g\v/1 + z2) to O in T2 is |gz — p|. This proves the only if part.
The converse direction is as easy. []

The fact that exponentials are replaced by powers in this proposition is due to the fact
that the torus T? is flat and not negatively curved.

3. A consequence of the exponential divergence of geodesics

In this section we prove a technical lemma which will be used later on. Let X be a
smooth complete simply connected Riemannian manifold, with pinched negative curvature
—0 < —a?> £ K £ —1, where a = 1. Fix a point x € X. For z =+ x, let t — z, be the (unit
speed) geodesic ray starting from x and passing through z. Let z,, be its point at infinity.

For every ¢ > 0 and metric space Y with distance d, we denote by ¢Y the set Y
endowed with the metric d, = ed.

Let Be X be a ball of a given radius. It is well known that (for all CAT(—1) spaces)
the shadow of B is comparable to a visual ball of radius which equals the exponential of
minus the distance between the base point and the center of the ball B. But we need more
precise estimates for the case when the radius of the ball B converges to 0. For these esti-
mates, we need the hypothesis of pinched curvature.

Lemma 3.1. There exist positive constants ci,ca,c3 with ¢ universal and c;,c3
depending only on a, such that for all z in X with d(x,z) = ¢, for all R > 0 with R < ¢3 and
R = d(x,z) then

B(z, Re™ ")) = 0,(B(z, R)) = B(zo0, ¢ Rie™ 2.
(- | |

log2 . . . .
Proof. Let ¢; = et and ¢; = 2—ga' Since sinh’(0) = 1, there exists a universal con-
!/

. . c
stant ¢} > 0 such that sinhz < 2rif 0 <t =< ¢}. Let c3 = 3.
a

Let us first prove the right inclusion. Let r: [0, 400[— X be a geodesic ray starting at
x, such that the orthogonal projection p of z onto the image of r satisfies d(z, p) < R. Let 0
be the angle at x between the tangent vectors of ¢ — z, and ¢ — r(¢). We have to prove that
the point at infinity r(o0) of r is at visual distance less than ¢1 Rie=@>2) from z,.

2 Zso 2t

8
S

- —--"

=3
i

P~
o~

p

P (t) r(00)

Figure 1. Comparing shadows and visual balls.
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. . ! .

Let (X, %, 7(t)) be a comparison triangle in — H? (whose distance we denote by di) of

a a

the geodesic triangle (x, zs, r(t)), with 0 its angle at X, Z the point corresponding to z, p the

orthogonal projection of Z onto the opposite side [X, 7(¢)]. Since P H? has constant curva-
1

ture —a?, the curvature of X is greater than or equal to the curvature of — H?, hence
a

di(z,p) £d(z,p) and 0<Z0.

By the hyperbolic sine rule in — H?,
a

a

g sinh 2 (20, 7(1))
sin = = 2 « and sinf =——~—.
2 sinhad\ (X, z;) sinhad\ (X, 2)

Since di(x,Z,) = d(x,z,) = t and dy(Z,, 7(r)) = d(

Since d(z,p) < R = d(x,z), one has 0 < g, hence 0 < g,

dx (200, 1(o0)) < <s1nhadl(56,2)

Since aR = ¢}, one has sinhadi(Z,p) < sinhad(z, p) < sinhaR < 2aR. Since

log?2
ad(x,z) = ac; = %,

. 1 B
one has sinhad(x,z) = Zead(-\,a)_ Hence
di(zo,r(0)) < (8a)* Rie~ (.2,

Therefore, the right inclusion in Lemma 3.1 holds since (8a)71‘ <q.

Remark 3.2. If one drops the assumption R < c3, one gets

04(B(z,R)) Bz, (4sinh(aR))e=13))
We now prove the left inclusion in Lemma 3.1. Let £ be a point in %#(z,, Re*d<x-2))’

let r: [0, +o0[— X be the geodesic ray starting at x whose point at infinity is r(c0) = &. Let
p be the orthogonal projection of z onto the image of r. We only have to prove that

d(z,p) < R.
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Let (X,Z, (7)) be a comparison triangle in H? (whose distance we denote by d;) of
the geodesic triangle (x, zy, r(t)), with 0 its angle at X. Let Z be the point corresponding to z,
and p be the orthogonal projection of Z onto the opposite side [X, 7(¢)]. Since the curvature
of X is less than or equal to the curvature of H?, one has

d(Z,p) = dl (va_)'

By the hyperbolic sine rule in H?,

T
i Q _ sinh 561’1 (Zz7 r(t)) and  sind — sinh d, (Z, p)
2 sinh d, (X, Z;) sinh d, (X, 2)

Since 0 € [0, 7], one has

4%:2) gin 6 < ™9 sin g

led(x,z) Slnhd(z7p) 1 5

< Shd(xo) =2
d(z,p) < 2 sinhd(x,z) = 2€

The right hand side converges, as ¢ goes to + o0, to
A g, (zoo, r(oo)) < 0 Red2) = R,

Therefore, the left inclusion in Lemma 3.1 holds. [

4. An upper bound for the Hausdorff dimension

Let X be a smooth complete simply connected Riemannian manifold of dimension
n =2, with pinched negative curvature —o0 < —a> < K < —1, with a>1. Let x,ye X
and f:]0,+0o0] — R be any function with f(#) converging to +oo as ¢ goes to +o0. For
z # x, let t — z, be the (unit speed) geodesic ray starting from x and passing through z, and
let zo, be its point at infinity. Let I" be a non elementary discrete group of isometries of X.
For every z in X, define B. to be the closed ball centered at z of radius r. = ¢/ @) and
(). = OB. the shadow of B. seen from x. Let ¢y be the set of points  in 0.X that belongs to
infinitely many shadows ¢,,, i.e. such that there exist infinitely many y in I" with ¢ € O,,.

S @) 9

Theorem 4.1.  If oo = liminf ——=, then dimp,ys(Of) <
t—+00 t 1 +

B

a
Proof. First let us assume that o < +oo. It is sufficient to prove that for every

0 . . e .
§ > ——, the s-dimensional Hausdorff measure y(y) is finite. Fix such an s.
I+-
a

Since f'(¢) tends to 400 as ¢ goes to +oo, by Lemma 3.1 (which required d(x, z) > R),
there exists a finite subset P of I" such that for every y in I — P, one has:

L Py
Oy = '@((yy)ooycl(r},y)“e d(x,/))).
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Fix n > 0 such that u(0r) < p,,(0r) + 1. Since f(t) is positive for ¢ big enough,
there exists a finite subset P’ of I, containing P, such that

1 _ ,
cl(rhy ap d<x!/y> é ’7

0
for every yin I — P’. Let ¢ > 0 be such that ¢ < 1 + P which exists by our choice of s.

J (@)

Since o = lim inf = there exists 7 > 0 such that if 7 > 7, then f(¢) = (o — &)t. Let P” be

t—+00
a finite subset of I', containing P’, such that d(x,yy) = T for every y in I' — P”. Since
(Oyy),cr_pr is a covering of Uy, one has

poy(O) = ellry)e ) <¢f 30 e o),

yel—p" yel—p"

. o—e ) ) .
Since s(l + —) > 0, this last series converges, and the result is proved.
a

If o = 400, then we formally replace o in the proof above by any 4 > 0, and we get

0
that dimpaus(Or) £ —— Lettmg A tend to +oo, it follows that dimpays(Or) =0, as
1+
a
wanted. [

5. A lower bound for the Hausdorff dimension

We keep the same notation as in the previous section. We want to prove the following
result.

t 0
Theorem 5.1. If I is cocompact and if f = lim sup & then dimp,,s(Or) = 107

t—+00 1+p

Fix ¢ > 0 with s =0 — 2¢ > 0. There is nothing to prove if f = +o0, therefore we
assume that f is finite (note that f > 0 since f(7) is eventually positive).

Since there exists 7' = 0 such that f(¢) < (B + 1)t for all 1 = T, up to replacing f(?)
/ ( )

by f({)= sup f(¢') for t = T, which satisfies 07 = Uy and limsup—= = f5, we may

t'e(T,1 t—+00
assume that /" is nondecreasing on [T', 4+00[. Since the validity of the result is unchanged if
we modify f on a compact subset of [0, +co], and since f(¢) tends to +oo as ¢ goes to + oo,
we may assume that f is nondecreasing on the whole [0, +oo[ and that f(¢) is bigger than
any constant (to be decided later) for all 7 in [0, 4c0], so in particular that f is positive.

Let .7 be a rooted tree, with 7 its set of vertices and x its root. For n € N, we denote
by T, the set of vertices at distance n from the root. Define the parent of v e T w1 as the
unique # in 7, which is joined by an edge to v. We call a child of u € T, to be any element
of the subset 7T'(u) of vertices in 7)1 joined by an edge to u.

For every u in X, define #.(u) = 0X if u = x and if u & x then let

B (1) = B(u,, e W/ dxu)]y
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The following proposition is crucial. It implies the existence of a tree whose ends give
rise to a large Cantor type subset of ;.

Proposition 5.2. If T is cocompact, there exist a rooted tree I with root x and whose
other vertices are in 'y, and a constant ¢ > 0 such that

(1) if'vis a child of u, then #.(v) is contained in %.(u),
(2) ifvis a child of u, then f(d(x,u)) < d(x,v) —d(x,u) < f(d(x,u)) +c,
(3) if v,w are children of u, then 2%.(v) and 2%.(w) are disjoint,

(4) for every vertex u, we have > e 31(xv) > g=sldlxu)+/(d(xu)]
ve T (u)

Proof. We first define the constant ¢, and we will then define 7, by induction on 7.

Definition of the constant c. For k € N, define 4 as
Ay ={ue X |k =d(x,u) <k+1}.

By [Pau], p. 234, there exist rp > 0, ¢4 > 0 and two distinct points a,,a_ in dX such that,
with B4 = HB(ay, 1),

e for every y in I, one of y$%4, or y¢%_ is contained in the shadow cone of
B(yy, ca),

e limsup e ™ Card{yel'|yy e €%+ nA4,} =+x.

n—-+4o0

Since I' is cocompact, there exists a constant R > 0 such that every open ball of

radius R contains a point of the orbit I'y. Define ¢s = — log(4 sinh(a(R + ¢4 + 1))) which is
strictly positive. Define cg = es(R+2cates+d(x.y)), a

By discreteness, there exists r; > 0 such that two balls of radius r| centered at two
distinct points of the orbit I'x are disjoint. Up to increasing f on a compact subset of
its domain of definition, we may assume that 2e~/() < for all  in [0, +oo[. By the
pinched curvature hypothesis, there exists N € N such that every ball of radius
2(1+42(2r1 4+ ¢4 +d(x,y))) contains at most N pairwise disjoint balls of radius ry.
Hence, for every neN, if V7, , is a maximal separated subset of ¥%, n A,, then
Card 6%, n A, = N Card V, .

Let n, be integers such that, with Vy = Vy .,
(i) ny Zsup{2R + 3c4 +c5 +d(x, ), f(0)},
(ii) ez Card{yeT |ype Vi} = cs.

Set c =R+ 2¢cs+c¢s+sup{n_,n }+1+d(x,y).
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Construction for n=1. Let Ty, = {x} and (for example) 77 =Ty V. Let us
check that the conditions (1)—(4) of the proposition are satisfied at step n =1 (i.e. for
u=x).

The assertion (1) is trivially true since %.(x) = 0X. By the definition of ¢ and the
positivity of f, one has f(0) +c¢=c=n, + 1, and f(0) < n, by (i) so that the assertion
(2) holds. Since 2r, < r; for all v in X, and since Vi , is (1 + 2r)-separated, the shadow
cones ¥((2B,) and ¥((2B,,) (with their cone points removed) are disjoint for every distinct
v,win T;. By Lemma 3.1, this implies that 24, (v) and 24, (w) are disjoint for every dis-
tinct v, w in T}, so the assertion (3) holds. Since 7'(x) = T} and ¢s = 1 = /(") the asser-
tion (4) is satisfied.

Assume that T}, is constructed with n = 1, and let u be in T,.

Construction of T(u). For every t=sup{c;,R+cs+ 1}, by Remark 3.2, the
shadow (O(B(ut, R+ c4+ 1)) 1s contained in the visual ball

B(uo, (4sinha(R + ¢4 + 1))56*‘1(”“’)).
We may assume that f(0) = sup{c2, R+ ¢4 + 1}, according to the discussion following the
statement of Theorem 5.1. Hence the shadow of B(u;, R + c4 + 1) is contained in %, (u) if
and only if, by definition of %, (u),
(4sinha(R + cs + 1))£e—d(x,u,> < o xS (d(x.u))
that is, if and only if 7 > 1o = d(x,u) + f(d(x,u)) + cs.

Let yy be an orbit point contained in the ball B(u,,, R). In particular, by the triangle
inequality,

() |d(x,u) + f(d(x,u)) + s —d(yp, )| = |d(uy,, x) — d(yy,x)| < R.
Let / € {+, —} be such that yV, is contained in the shadow cone of B(yy, cs4).

Define 7'(u) = 'y nyV,, which is a finite subset of points of the orbit of y under T
Let us check the properties (1)—(4) of Proposition 5.2. Let v be in 7'(u).

Verification of Property (2). Since T (u) is contained in the shadow cone of the ball
B(yx, c4), one has

|d(l), X) - d(l}, Vy) - d(yyu X)| é 2C4-
Since n, < d(v,yx) < ny + 1 and by the triangular inequality, one gets
ne—d(x,y) £d(v,yy) Sne+1+d(x, p).
Hence by the equation (x), one has

n,—R—2cs—d(x,y) d(v,x) —d(u,x) — f(d(x,u)) —cs < R+2cs+n,+1+d(x,p).
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Therefore, by the definition of ¢ and the assumption (i) on n,, the assertion (2) of Propo-
sition 5.2 holds. More precisely,

0<d(v,x) —d(u,x)— f(dx,u)) Sc;, =R+ 2cs+cs+n,+1+d(x,p).
Furthermore, by the positivity of /" and again the assumption (i) on 7, we have
d(v,x) —d(u,x) = ¢ = R+ ¢4+ ¢s.

Verification of Property (4). By the definition of ¢, and ¢¢, we have

) ) e—s(n/—}—l)
—sd(x,v) > e—s(zl(x,u)+_f(d(x,u))-&—v/) _ e—s[zl(x,u)+_f(d(x,u))]

C6

e

Hence by summing over the v’s in 7'(u), and by using (ii), we obtain

Z efsd(x,v) > efs[d(x.,u)+f(d(x,u))].
ve T'(u)

Therefore, the assertion (4) is satisfied.

Verification of Property (3). Since 24, (v) is contained in ¢(2B,) by Lemma 3.1, and
since 2r, = 2¢ /(@) <y the assertion (3) is satisfied. Indeed, let v, w be children of u. If
some geodesic ray o from x meets B(v,r;) and B(w,r;), then « lies in ¥OB(yy,cs +r1) by
convexity. Hence, with p,, p,, the orthogonal projections of v, w on ¢, one has

d(v,w) = d(pv,pw) +2r1 = |d(pw, x) — d(pe, x)| + 211
< |d(pw,7y) —d(po,7y)| + 2(ca +11) + 211
< |d(pw,yx) — d(pv, px)| + 2d(x, ) + 2(cs + 211)
< 14 2(es+d(x,p) +2r1),

which contradicts the fact that V7 is (1 + 2(c4 + d(x,p) + 2r1))-separated.

Verification of Property (1). Since T'(u) is contained in the shadow cone of B(yy, ca),
there exists a point z in B(yy, ¢4) on the geodesic segment between x and v. Note that

d(xv Z) = d(xv ufo) + d(utovyy) + d(yy,Z) S+ R+ Cq4
d(x,u) + f(d(x,u)) + ¢s + R+ 4.

Since f is nondecreasing, and since d(v, x) — d(u,x) = ¢, the ball
B.(v) = B(vsy, e [dx0)+f(d(x, v))))

is contained in the ball %(v,,, e~ @1 +/(dxw)+er)) By Lemma 3.1, the latter visual ball is
contained in the shadow of B(z,r) with

p = e () ter) pd(x.2) < pRebctes—c
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which is 1 by the definition of ¢;. Therefore %.(v) is contained in the shadow of B(z, 1),
which is contained in the shadow of B(u,,, R + ¢4 + 1) since

d(z,u,) =d(z,py) +d(yy,u,) < ca + R

Since the shadow of B(uy,, R + ¢4 + 1) is contained in %, (u) by definition of #j, this proves
that 4. (v) is contained in %, (u), therefore the assertion (1) holds.

Letting 7,,;1 = |J T'(u), the construction at the step n + 1 is completed. This ends

ueT,

the proof of Proposition 5.2. []

We identify the set 07 of ends of the tree T constructed in the Proposition 5.2 with
the set of sequences (uy), . Of vertices of T with w1 € T(u,) and uy = x.

Proposition 5.3.  For every end (uy),.y of T, there exists & in 0X such that the
sequence of points u, of X converges to &. The map 0T — 0X defined by (uy,) — & s an
homeomorphism onto its image K, which is a Cantor set contained in Uy.

neN

Proof. Denote by E the closure of a subset E of 0X. By the property (1) in Pro-
position 5.2, if (uy),cy is an end of T, then (%.(u)),_, is a decreasing sequence of
compact subsets whose diameter for the visual distance tends to 0 (since f(0) >0 and
d(x,uy+1) = d(x,u,) + f(0) by the property (2) in Proposition 5.2). Therefore its intersec-
tion contains one and only one point, which is the limit of the points , by definition of the
topology on X U 0X.

Note that by the properties (1) and (3) in Proposition 5.2, the visual balls 2%, (u),
2%.(u') are disjoint for u + u’ in T,, by an easy induction on n. Define K, as the (finite)
union of the closures of the visual balls %4, (u) for u in T,. Hence (K,), . is a decreasing
sequence of compact subsets of 0.X. Its intersection K is a Cantor set which is the image of
the map 07 — 0X defined in the statement of the proposition.

By the definition of (), the Cantor set K is contained in . []

Proposition 5.4. There exists a probability measure u on the Cantor set K and a con-
stant C > 0 such that ,u(%’(é, e K) < Cr#r% for every & in K and r > 0.

Proof. Since K = ( 11 %’*(u)>, there exists a probability measure u on K

neN ueT,

which is defined by x(%.(x)) = 1 and if v is a child of u, then

e—sld(x,v)+ £ (d(x,v))]
Z efsd(x.,w) lu(@*(u))

we T(u)

1(#.(v) =

By the property (4) in Proposition 5.2 and an easy induction argument, we have
(%) 1(%. () < e (0) p=sld(x,u)+ f(d(x,u))]

for every vertex u of T.
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For every ¢ in K and r> 0, let (u,),.n be a ray in T with 1ir+n u, = &. Since
n——+0o0

{2%.(u,) |n € N} is a neigbourhood basis of £, and dX has no isolated point, there exists a
first nin N — {0} with #(¢, r) not contained in 24, (u,). Let z be a point in

B(C,r) = 2B (un),
therefore
de(z,&) <r and  di(z,u,) = 2o~ 14X tn)+ S (d(x, 1))
Since & belongs to %.(u,), one has
do(& 1) < e lsm) S (doem))],
Therefore, by the triangular inequality,

r= dx(Z, é) 2 dx(z> uw) - dx(”oc;é) 2 ef[d(x,un)qu(d(x,u,,))]'

. . t .
Since lim sup @ = f3, there exists a constant 4 > 0 such that f(¢) = (f+¢)t+ A for

t——+o0

every ¢ € [0, +oo[. Therefore

(%) r> oA~ (1HB+e)d(x,u,)

By the minimality of n, the visual ball #(¢&,r) is contained in 24, (u,_). Therefore
B(E,r) N K is contained in 2%, (u,—1) N K = A.(u,—1) N K, by the property (3) in Propo-
sition 5.2. Therefore by equation (),

W(AE) A K) S u(Bu(t1) A K) S O,
By the property (2) in Proposition 5.2, one has

e—sd(x,u,,) z e—s(d(x,u,,,l)+f(d(x,u”,1))+c)

so that u(%#(&,r) N K) < eV (O+c)e=sd(xm) By equation (##x), one has
w(B(E 1) NK) < VO (eApymm,
This ends the proof of the proposition by taking C = e*U/(0+9)erim, ]
Proof of Theorem 5.1. By the easy part of Frostman’s Lemma (see [Fro]), the

Proposition 5.4 implies that the Hausdorff dimension of the Cantor set K (hence the one of

(y by Proposition 5.3) is at least . Since s = 0 — 2¢, the result follows by letting ¢

5
1+B+e
tend to 0. [
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